Контакты

Как ученые из NASA собираются превысить скорость света в космосе. Возможен ли сверхсветовой полёт? Квантовая теория поля

Путешествие на сверхсветовой скорости — одна из основ космической научной фантастики. Однако наверное, всем - даже людям, далеким от физики, - известно, что предельно возможной скоростью движения материальных объектов или распространения любых сигналов является скорость света в вакууме. Она обозначается буквой с и составляет почти 300 тысяч километров в секунду; точная величина с = 299 792 458 м/с.

Скорость света в вакууме - одна из фундаментальных физических констант. Невозможность достижения скоростей, превышающих с, вытекает из специальной теории относительности (СТО) Эйнштейна. Если бы удалось доказать, что возможна передача сигналов со сверхсветовой скоростью, теория относительности пала бы. Пока что этого не случилось, несмотря на многочисленные попытки опровергнуть запрет на существование скоростей, больших с. Однако в экспериментальных исследованиях последнего времени обнаружились некоторые весьма интересные явления, свидетельствующие о том, что при специально созданных условиях можно наблюдать сверхсветовые скорости и при этом принципы теории относительности не нарушаются.

Для начала напомним основные аспекты, относящиеся к проблеме скорости света.

Прежде всего: почему нельзя (при обычных условиях) превысить световой предел? Потому, что тогда нарушается фундаментальный закон нашего мира - закон причинности, в соответствии с которым следствие не может опережать причину. Никто никогда не наблюдал, чтобы, например, сначала замертво упал медведь, а потом выстрелил охотник. При скоростях же, превышающих с, последовательность событий становится обратной, лента времени отматывается назад. В этом легко убедиться из следующего простого рассуждения.

Предположим, что мы находимся на неком космическом чудо-корабле, движущемся быстрее света. Тогда мы постепенно догоняли бы свет, испущенный источником во все более и более ранние моменты времени. Сначала мы догнали бы фотоны, испущенные, скажем, вчера, затем - испущенные позавчера, потом - неделю, месяц, год назад и так далее. Если бы источником света было зеркало, отражающее жизнь, то мы сначала увидели бы события вчерашнего дня, затем позавчерашнего и так далее. Мы могли бы увидеть, скажем, старика, который постепенно превращается в человека средних лет, затем в молодого, в юношу, в ребенка... То есть время повернуло бы вспять, мы двигались бы из настоящего в прошлое. Причины и следствия при этом поменялись бы местами.

Хотя в этом рассуждении полностью игнорируются технические детали процесса наблюдения за светом, с принципиальной точки зрения оно наглядно демонстрирует, что движение со сверхсветовой скоростью приводит к невозможной в нашем мире ситуации. Однако природа поставила еще более жесткие условия: недостижимо движение не только со сверхсветовой скоростью, но и со скоростью, равной скорости света, - к ней можно только приближаться. Из теории относительности следует, что при увеличении скорости движения возникают три обстоятельства: возрастает масса движущегося объекта, уменьшается его размер в направлении движения и замедляется течение времени на этом объекте (с точки зрения внешнего "покоящегося" наблюдателя). При обычных скоростях эти изменения ничтожно малы, но по мере приближения к скорости света они становятся все ощутимее, а в пределе - при скорости, равной с, - масса становится бесконечно большой, объект полностью теряет размер в направлении движения и время на нем останавливается. Поэтому никакое материальное тело не может достичь скорости света. Такой скоростью обладает только сам свет! (А также "всепроникающая" частица - нейтрино, которая, как и фотон, не может двигаться со скоростью, меньшей с.)

Теперь о скорости передачи сигнала. Здесь уместно воспользоваться представлением света в виде электромагнитных волн. Что такое сигнал? Это некая информация, подлежащая передаче. Идеальная электромагнитная волна - это бесконечная синусоида строго одной частоты, и она не может нести никакой информации, ибо каждый период такой синусоиды в точности повторяет предыдущий. Cкорость перемещения фазы cинусоидальной волны - так называемая фазовая скорость - может в среде при определенных условиях превышать скорость света в вакууме. Здесь ограничения отсутствуют, так как фазовая скорость не является скоростью сигнала - его еще нет. Чтобы создать сигнал, надо сделать какую-то "отметку" на волне. Такой отметкой может быть, например, изменение любого из параметров волны - амплитуды, частоты или начальной фазы. Но как только отметка сделана, волна теряет синусоидальность. Она становится модулированной, состоящей из набора простых синусоидальных волн с различными амплитудами, частотами и начальными фазами - группы волн. Скорость перемещения отметки в модулированной волне и является скоростью сигнала. При распространении в среде эта скорость обычно совпадает с групповой скоростью, характеризующей распространение вышеупомянутой группы волн как целого (см. "Наука и жизнь" № 2, 2000 г.). При обычных условиях групповая скорость, а следовательно, и скорость сигнала меньше скорости света в вакууме. Здесь не случайно употреблено выражение "при обычных условиях", ибо в некоторых случаях и групповая скорость может превышать с или вообще терять смысл, но тогда она не относится к распространению сигнала. В СТО устанавливается, что невозможна передача сигнала со скоростью, большей с.

Почему это так? Потому, что препятствием для передачи любого сигнала со скоростью больше с служит все тот же закон причинности. Представим себе такую ситуацию. В некоторой точке А световая вспышка (событие 1) включает устройство, посылающее некий радиосигнал, а в удаленной точке В под действием этого радиосигнала происходит взрыв (событие 2). Понятно, что событие 1 (вспышка) - причина, а событие 2 (взрыв) - следствие, наступающее позже причины. Но если бы радиосигнал распространялся со сверхсветовой скоростью, наблюдатель вблизи точки В увидел бы сначала взрыв, а уже потом - дошедшую до него со скоростью с световую вспышку, причину взрыва. Другими словами, для этого наблюдателя событие 2 совершилось бы раньше, чем событие 1, то есть следствие опередило бы причину.

Уместно подчеркнуть, что "сверхсветовой запрет" теории относительности накладывается только на движение материальных тел и передачу сигналов. Во многих ситуациях возможно движение с любой скоростью, но это будет движение не материальных объектов и не сигналов. Например, представим себе две лежащие в одной плоскости достаточно длинные линейки, одна из которых расположена горизонтально, а другая пересекает ее под малым углом. Если первую линейку двигать вниз (в направлении, указанном стрелкой) с большой скоростью, точку пересечения линеек можно заставить бежать сколь угодно быстро, но эта точка - не материальное тело. Другой пример: если взять фонарик (или, скажем, лазер, дающий узкий луч) и быстро описать им в воздухе дугу, то линейная скорость светового зайчика будет увеличиваться с расстоянием и на достаточно большом удалении превысит с. Световое пятно переместится между точками А и В со сверхсветовой скоростью, но это не будет передачей сигнала из А в В, так как такой световой зайчик не несет никакой информации о точке А.

Казалось бы, вопрос о сверхсветовых скоростях решен. Но в 60-х годах двадцатого столетия физиками-теоретиками была выдвинута гипотеза существования сверхсветовых частиц, названных тахионами. Это очень странные частицы: теоретически они возможны, но во избежание противоречий с теорией относительности им пришлось приписать мнимую массу покоя. Физически мнимая масса не существует, это чисто математическая абстракция. Однако это не вызвало особой тревоги, поскольку тахионы не могут находиться в покое - они существуют (если существуют!) только при скоростях, превышающих скорость света в вакууме, а в этом случае масса тахиона оказывается вещественной. Здесь есть некоторая аналогия с фотонами: у фотона масса покоя равна нулю, но это просто означает, что фотон не может находиться в покое - свет нельзя остановить.

Наиболее сложным оказалось, как и следовало ожидать, примирить тахионную гипотезу с законом причинности. Попытки, предпринимавшиеся в этом направлении, хотя и были достаточно остроумными, не привели к явному успеху. Экспериментально зарегистриро вать тахионы также никому не удалось. В итоге интерес к тахионам как к сверхсветовым элементарным частицам постепенно сошел на нет.

Однако в 60-х же годах было экспериментально обнаружено явление, поначалу приведшее физиков в замешательство. Об этом подробно рассказано в статье А. Н. Ораевского "Сверхсветовые волны в усиливающих средах" (УФН № 12, 1998 г.). Здесь мы кратко приведем суть дела, отсылая читателя, интересующегося подробностями, к указанной статье.

Вскоре после открытия лазеров - в начале 60-х годов - возникла проблема получения коротких (длительностью порядка 1 нс = 10-9 с) импульсов света большой мощности. Для этого короткий лазерный импульс пропускался через оптический квантовый усилитель. Импульс расщеплялся светодели тельным зеркалом на две части. Одна из них, более мощная, направлялась в усилитель, а другая распространялась в воздухе и служила опорным импульсом, с которым можно было сравнивать импульс, прошедший через усилитель. Оба импульса подавались на фотоприемники, а их выходные сигналы могли визуально наблюдаться на экране осциллографа. Ожидалось, что световой импульс, проходящий через усилитель, испытает в нем некоторую задержку по сравнению с опорным импульсом, то есть скорость распространения света в усилителе будет меньше, чем в воздухе. Каково же было изумление исследователей, когда они обнаружили, что импульс распространялся через усилитель со скоростью не только большей, чем в воздухе, но и превышающей скорость света в вакууме в несколько раз!

Оправившись от первого шока, физики стали искать причину столь неожиданного результата. Ни у кого не возникло даже малейшего сомнения в принципах специальной теории относительности, и именно это помогло найти правильное объяснение: если принципы СТО сохраняются, то ответ следует искать в свойствах усиливающей среды.

Не вдаваясь здесь в детали, укажем лишь, что подробный анализ механизма действия усиливающей среды полностью прояснил ситуацию. Дело заключалось в изменении концентрации фотонов при распространении импульса - изменении, обусловленном изменением коэффициента усиления среды вплоть до отрицательного значения при прохождении задней части импульса, когда среда уже поглощает энергию, ибо ее собственный запас уже израсходован вследствие передачи ее световому импульсу. Поглощение вызывает не усиление, а ослабление импульса, и, таким образом, импульс оказывается усиленным в передней и ослабленным в задней его части. Представим себе, что мы наблюдаем за импульсом при помощи прибора, движущегося со скоростью света в среде усилителя. Если бы среда была прозрачной, мы видели бы застывший в неподвижности импульс. В среде же, в которой происходит упомянутый выше процесс, усиление переднего и ослабление заднего фронта импульса будет представляться наблюдателю так, что среда как бы подвинула импульс вперед. Но раз прибор (наблюдатель) движется со скоростью света, а импульс обгоняет его, то скорость импульса превышает скорость света! Именно этот эффект и был зарегистрирован экспериментаторами. И здесь действительно нет противоречия с теорией относительности: просто процесс усиления таков, что концентрация фотонов, вышедших раньше, оказывается больше, чем вышедших позже. Со сверхсветовой скоростью перемещаются не фотоны, а огибающая импульса, в частности его максимум, который и наблюдается на осциллографе.

Таким образом, в то время как в обычных средах всегда происходит ослабление света и уменьшение его скорости, определяемое показателем преломления, в активных лазерных средах наблюдается не только усиление света, но и распространение импульса со сверхсветовой скоростью.

Некоторые физики пытались экспериментально доказать наличие сверхсветового движения при туннельном эффекте - одном из наиболее удивительных явлений в квантовой механике. Этот эффект состоит в том, что микрочастица (точнее говоря, микрообъект, в разных условиях проявляющий как свойства частицы, так и свойства волны) способна проникать через так называемый потенциальный барьер - явление, совершенно невозможное в классической механике (в которой аналогом была бы такая ситуация: брошенный в стену мяч оказался бы по другую сторону стены или же волнообразное движение, приданное привязанной к стене веревке, передавалось бы веревке, привязанной к стене с другой стороны). Сущность туннельного эффекта в квантовой механике состоит в следующем. Если микрообъект, обладающий определенной энергией, встречает на своем пути область с потенциальной энергией, превышающей энергию микрообъекта, эта область является для него барьером, высота которого определяется разностью энергий. Но микрообъект "просачивается" через барьер! Такую возможность дает ему известное соотношение неопределенностей Гейзенбер га, записанное для энергии и времени взаимодействия. Если взаимодействие микрообъекта с барьером происходит в течение достаточно определенного времени, то энергия микрообъекта будет, наоборот, характеризоваться неопределенностью, и если эта неопределен ность будет порядка высоты барьера, то последний перестает быть для микрообъекта непреодолимым препятствием. Вот скорость проникновения через потенциальный барьер и стала предметом исследований ряда физиков, полагающих, что она может превышать с.

В июне 1998 года в КЈльне состоялся международный симпозиум по проблемам сверхсветовых движений, где обсуждались результаты, полученные в четырех лабораториях - в Беркли, Вене, КЈльне и во Флоренции.

И, наконец, в 2000 году появились сообщения о двух новых экспериментах, в которых проявились эффекты сверхсветового распространения. Один из них выполнил Лиджун Вонг с сотрудниками в исследовательском институте в Принстоне (США). Его результат состоит в том, что световой импульс, входящий в камеру, наполненную парами цезия, увеличивает свою скорость в 300 раз. Получалось, что главная часть импульса выходит из дальней стенки камеры даже раньше, чем импульс входит в камеру через переднюю стенку. Такая ситуация противоречит не только здравому смыслу, но, в сущности, и теории относитель ности.

Сообщение Л. Вонга вызвало интенсивное обсуждение в кругу физиков, большинство которых не склонны видеть в полученных результатах нарушение принципов относительно сти. Задача состоит в том, полагают они, чтобы правильно объяснить этот эксперимент.

В эксперименте Л.Вонга световой импульс, входящий в камеру с парами цезия, имел длительность около 3 мкс. Атомы цезия могут находиться в шестнадцати возможных квантовомеханических состояниях, называемых "сверхтонкие магнитные подуровни основного состояния". При помощи оптической лазерной накачки почти все атомы приводились только в одно из этих шестнадцати состояний, соответствующее почти абсолютному нулю температуры по шкале Кельвина (-273,15оC). Длина цезиевой камеры составляла 6 сантиметров. В вакууме свет проходит 6 сантиметров за 0,2 нс. Через камеру же с цезием, как показали выполненные измерения, световой импульс проходил за время на 62 нс меньшее, чем в вакууме. Другими словами, время прохождения импульса через цезиевую среду имеет знак "минус"! Действительно, если из 0,2 нс вычесть 62 нс, получим "отрицательное" время. Эта "отрицательная задержка" в среде - непостижимый временной скачок - равен времени, в течение которого импульс совершил бы 310 проходов через камеру в вакууме. Следствием этого "временного переворота" явилось то, что выходящий из камеры импульс успел удалиться от нее на 19 метров, прежде чем приходящий импульс достиг ближней стенки камеры. Как же можно объяснить такую невероятную ситуацию (если, конечно, не сомневаться в чистоте эксперимента)?

Судя по развернувшейся дискуссии, точное объяснение еще не найдено, но несомненно, что здесь играют роль необычные дисперсионные свойства среды: пары цезия, состоящие из возбужденных лазерным светом атомов, представляют собой среду с аномальной дисперсией. Напомним кратко, что это такое.

Дисперсией вещества называется зависимость фазового (обычного) показателя преломления n от длины волны света l. При нормальной дисперсии показатель преломления увеличивается с уменьшением длины волны, и это имеет место в стекле, воде, воздухе и всех других прозрачных для света веществах. В веществах же, сильно поглощающих свет, ход показателя преломления с изменением длины волны меняется на обратный и становится гораздо круче: при уменьшении l (увеличении частоты w) показатель преломления резко уменьшается и в некоторой области длин волн становится меньше единицы (фазовая скорость Vф > с). Это и есть аномальная дисперсия, при которой картина распространения света в веществе меняется радикальным образом. Групповая скорость Vгр становится больше фазовой скорости волн и может превысить скорость света в вакууме (а также стать отрицательной). Л. Вонг указывает на это обстоятельство как на причину, лежащую в основе возможности объяснения результатов его эксперимента. Следует, однако, заметить, что условие Vгр > с является чисто формальным, так как понятие групповой скорости введено для случая малой (нормальной) дисперсии, для прозрачных сред, когда группа волн при распространении почти не меняет своей формы. В областях же аномальной дисперсии световой импульс быстро деформируется и понятие групповой скорости теряет смысл; в этом случае вводятся понятия скорости сигнала и скорости распространения энергии, которые в прозрачных средах совпадают с групповой скоростью, а в средах с поглощением остаются меньше скорости света в вакууме. Но вот что интересно в эксперименте Вонга: световой импульс, пройдя через среду с аномальной дисперсией, не деформируется - он в точности сохраняет свою форму! А это соответствует допущению о распространении импульса с групповой скоростью. Но если так, то получается, что в среде отсутствует поглощение, хотя аномальная дисперсия среды обусловлена именно поглощением! Сам Вонг, признавая, что многое еще остается неясным, полагает, что происходящее в его экспериментальной установке можно в первом приближении наглядно объяснить следующим образом.

Световой импульс состоит из множества составляющих с различными длинами волн (частотами). На рисунке показаны три из этих составляющих (волны 1-3). В некоторой точке все три волны находятся в фазе (их максимумы совпадают); здесь они, складываясь, усиливают друг друга и образуют импульс. По мере дальнейшего распространения в пространстве волны расфазируются и тем самым "гасят" друг друга.

В области аномальной дисперсии (внутри цезиевой ячейки) волна, которая была короче (волна 1), становится длиннее. И наоборот, волна, бывшая самой длинной из трех (волна 3), становится самой короткой.

Следовательно, соответственно меняются и фазы волн. Когда волны прошли через цезиевую ячейку, их волновые фронты восстанавливаются. Претерпев необычную фазовую модуляцию в веществе с аномальной дисперсией, три рассматриваемые волны вновь оказываются в фазе в некоторой точке. Здесь они снова складываются и образуют импульс точно такой же формы, как и входящий в цезиевую среду.

Обычно в воздухе и фактически в любой прозрачной среде с нормальной дисперсией световой импульс не может точно сохранять свою форму при распространении на удаленное расстояние, то есть все его составляющие не могут быть сфазированы в какой-либо удаленной точке вдоль пути распространения. И в обычных условиях световой импульс в такой удаленной точке появляется спустя некоторое время. Однако вследствие аномальных свойств использованной в эксперименте среды импульс в удаленной точке оказался сфазирован так же, как и при входе в эту среду. Таким образом, световой импульс ведет себя так, как если бы он имел отрицательную временную задержку на пути до удаленной точки, то есть пришел бы в нее не позже, а раньше, чем прошел среду!

Большая часть физиков склонна связывать этот результат с возникновением низкоинтенсивного предвестника в диспергирующей среде камеры. Дело в том, что при спектральном разложении импульса в спектре присутствуют составляющие сколь угодно высоких частот с ничтожно малой амплитудой, так называемый предвестник, идущий впереди "главной части" импульса. Характер установления и форма предвестника зависят от закона дисперсии в среде. Имея это в виду, последовательность событий в эксперименте Вонга предлагается интерпретировать следующим образом. Приходящая волна, "простирая" предвестник впереди себя, приближается к камере. Прежде чем пик приходящей волны попадет на ближнюю стенку камеры, предвестник инициирует возникновение импульса в камере, который доходит до дальней стенки и отражается от нее, образуя "обратную волну". Эта волна, распространяясь в 300 раз быстрее с, достигает ближней стенки и встречается с приходящей волной. Пики одной волны встречаются со впадинами другой, так что они уничтожают друг друга и в результате ничего не остается. Получается, что приходящая волна "возвращает долг" атомам цезия, которые "одалживали" ей энергию на другом конце камеры. Тот, кто наблюдал бы только начало и конец эксперимента, увидел бы лишь импульс света, который "прыгнул" вперед во времени, двигаясь быстрее с.

Л. Вонг считает, что его эксперимент не согласуется с теорией относительности. Утверждение о недостижимости сверхсветовой скорости, полагает он, применимо только к объектам, обладающим массой покоя. Свет может быть представлен либо в виде волн, к которым вообще неприменимо понятие массы, либо в виде фотонов с массой покоя, как известно, равной нулю. Поэтому скорость света в вакууме, считает Вонг, не предел. Тем не менее Вонг признает, что обнаруженный им эффект не дает возможности передавать информацию со скоростью больше с.

"Информация здесь уже заключена в переднем крае импульса, - говорит П. Милонни, физик из Лос-Аламосской национальной лаборатории США. - И может создаться впечатление о сверхсветовой посылке информации, даже когда вы ее не посылаете".

Большинство физиков считают, что новая работа не наносит сокрушительного удара по фундаментальным принципам. Но не все физики полагают, что проблема улажена. Профессор А. Ранфагни из итальянской исследовательской группы, осуществившей еще один интересный эксперимент 2000 года, считает, что вопрос еще остается открытым. Этот эксперимент, проведенный Даниэлом Мугнаи, Анедио Ранфагни и Рокко Руггери, обнаружил, что радиоволны сантиметрового диапазона в обычном воздухе распространяются со скоростью, превышающей с на 25%.

Резюмируя, можно сказать следующее.

Работы последних лет показывают, что при определенных условиях сверхсветовая скорость действительно может иметь место. Но что именно движется со сверхсветовой скоростью? Теория относительности, как уже упоминалось, запрещает такую скорость для материальных тел и для сигналов, несущих информацию. Тем не менее некоторые исследователи весьма настойчиво пытаются продемонстри ровать преодоление светового барьера именно для сигналов. Причина этого кроется в том, что в специальной теории относительности нет строгого математического обоснования (базирующегося, скажем, на уравнениях Максвелла для электромагнитного поля) невозможности передачи сигналов со скоростью больше с. Такая невозможность в СТО устанавливается, можно сказать, чисто арифметически, исходя из эйнштейновской формулы сложения скоростей, но фундаментальным образом это подтверждается принципом причинности. Сам Эйнштейн, рассматривая вопрос о сверхсветовой передаче сигналов, писал, что в этом случае "...мы вынуждены считать возможным механизм передачи сигнала, при использовании которого достигаемое действие предшествует причине. Но, хотя этот результат с чисто логической точки зрения и не содержит в себе, по-моему, никаких противоречий, он все же настолько противоречит характеру всего нашего опыта, что невозможность предположения V > с представляется в достаточной степени доказанной". Принцип причинности - вот тот краеугольный камень, который лежит в основе невозможности сверхсветовой передачи сигналов. И об этот камень, по-видимому, будут спотыкаться все без исключения поиски сверхсветовых сигналов, как бы экспериментаторам не хотелось такие сигналы обнаружить, ибо такова природа нашего мира.

Но все же давайте представим, что математика относительности будет по-прежнему работать на сверхсветовых скоростях. Это означает, что теоретически мы все-таки можем узнать, что произошло бы, случись телу превысить скорость света.

Представим себе два космических корабля, направляющихся от Земли в сторону звезды, которая отстоит от нашей планеты на расстоянии в 100 световых лет. Первый корабль покидает Землю со скоростью в 50% от скорости света, так что на весь путь у него уйдет 200 лет. Второй корабль, оснащенный гипотетическим варп-двигателем, отправится со скоростью в 200% от скорости света, но спустя 100 лет после первого. Что же произойдет?

Согласно теории относительности, правильный ответ во многом зависит от перспективы наблюдателя. С Земли будет казаться, что первый корабль уже прошел значительное расстояние, прежде чем его обогнал второй корабль, который движется вчетверо быстрее. А вот с точки зрения людей, находящихся на первом корабле, все немного не так.

Корабль №2 движется быстрее света, а значит может обогнать даже свет, который сам же и испускает. Это приводит к своего рода «световой волне» (аналог звуковой, только вместо вибраций воздуха здесь вибрируют световые волны), которая порождает несколько интересных эффектов. Напомним, что свет от корабля №2 движется медленнее, чем сам корабль. В результате произойдет визуальное удвоение. Иными словами, сначала экипаж корабля №1 увидит, что второй корабль возник рядом с ним словно из ниоткуда. Затем, свет от второго корабля с небольшим опозданием достигнет первого, и в результате получится видимая копия, которая будет двигаться в том же направлении с небольшим отставанием.

Нечто подобное можно увидеть в компьютерных играх, когда в результате системного сбоя движок прогружает модель и ее алгоритмы в конечной точке движения быстрее, чем заканчивается сама анимация движения, так что возникают множественные дубли. Вероятно, именно поэтому наше сознание и не воспринимает тот гипотетический аспект Вселенной, в котором тела движутся на сверхсветовой скорости — быть может, это и к лучшему.

П.С. ... а вот в последнем примере я что то не понял, почему реальное положение корабля связывается с "испускаемым им светом"? Ну и пусть что видеть его будут как то не там, но реально то он обгонит первый корабль!

источники

Скорость света — одна из универсальных физических констант, она не зависит от выбора инерциальной системы отсчета и описывает свойства пространства-времени в целом. Скорость света в вакууме равна 299 792 458 метров в секунду, и это предельная скорость движения частиц и распространения взаимодействий. Так учат нас школьные книги по физике. Еще можно вспомнить о том, что масса тела как раз не является постоянной и при приближении скорости к скорости света стремится к бесконечности. Именно поэтому со скоростью света движутся фотоны — частицы без массы, а частицам с массой это значительно труднее.

Однако международный коллектив ученых масштабного эксперимента OPERA, расположенного недалеко от Рима, готов поспорить с азбучной истиной.

Ему удалось обнаружить нейтрино, которые, как показали эксперименты, движутся со скоростью больше скорости света,

сообщает пресс-служба Европейской организации ядерных исследований (CERN).

Эксперимент OPERA (Oscillation Project with Emulsion-tRacking Apparatus) изучает самые инертные частицы Вселенной — нейтрино. Они настолько инертны, что могут пролететь насквозь через весь Земной шар, звезды и планеты, а для того, чтобы они ударились в преграду из железа, размер этой преграды должен быть от Солнца до Юпитера. Каждую секунду через тело каждого человека на Земле проходит порядка 10 14 нейтрино, испущенных Солнцем. Вероятность того, что хотя бы одно из них ударится в ткани человека на протяжении всей его жизни, стремится к нулю. По этим причинам регистрировать и изучать нейтрино чрезвычайно трудно. Лаборатории, которые этим занимаются, находятся глубоко под горами и даже подо льдами Антарктиды.

OPERA получает пучок нейтрино из CERN, где находится Большой адронный коллайдер. Его «младший брат» — суперпротонный синхротрон (SPS) — направляет пучок прямо под землей в сторону Рима. Получаемый пучок нейтрино проходит сквозь толщу земной коры, тем самым очищаясь от других частиц, которые вещество коры задерживает, и попадает прямиком в лабораторию в Гран-Сассо, укрытую под 1200 м скалы.

Подземный путь в 732 км нейтрино преодолевают за 2,5 миллисекунды.

Детектор проекта OPERA, состоящий из примерно 150 тысяч элементов и весящий 1300 т, «ловит» нейтрино и изучает их. В частности, основной целью является изучение так называемых нейтринных осцилляций — переходов из одного типа нейтрино в другой.

Ошеломляющие результаты о превышении скорости света подкреплены серьезной статистикой: лаборатория в Гран-Сассо наблюдала около 15 тыс. нейтрино. Ученые выяснили, что

нейтрино движутся со скоростью, на 20 миллионных долей превышающей скорость света — «непогрешимый» предел скорости.

Этот результат стал для них неожиданностью, его объяснения пока не предложено. Естественно, для его опровержения или подтверждения требуются независимые эксперименты, проведенные другими группами на другом оборудовании, — этот принцип «двойного слепого контроля» реализован и на Большом адронном коллайдере CERN. Коллаборация OPERA незамедлительно опубликовала свои результаты, чтобы дать возможность коллегам по всему миру проверить их. Детальное описание работ доступно на сайте препринтов Arxiv.Org .

Официальное представление результатов состоится сегодня на семинаре в CERN в 18.00 по Москве, будет вестись онлайн-трансляция .

«Эти данные стали полной неожиданностью. После месяцев сбора, анализа и очистки данных, а также перекрестных проверок мы не нашли ни в алгоритме обработке данных, ни в детекторе возможного источника системной ошибки. Поэтому мы публикуем наши результаты, продолжаем работу, а также надеемся, что независимые измерения других групп помогут понять природу этого наблюдения», — заявил руководитель эксперимента OPERA Антонио Эредитато из Университета Берна, слова которого приводит пресс-служба CERN.

«Когда ученые-экспериментаторы обнаруживают некий неправдоподобный результат и не могут найти артефакта, который бы его объяснял, они обращаются к своим коллегам из других групп, чтобы началось более широкое исследование вопроса. Это хорошая научная традиция, и коллаборация OPERA сейчас следует ей.

Если наблюдения превышения скорости света подтвердятся, это может изменить наше понимание физики, но мы должны удостовериться в том, что они не имеют другого, более банального объяснения.

Для этого и нужны независимые эксперименты», — заявил научный директор CERN Серджо Бертолуччи.

Проводимые в OPERA измерения чрезвычайно точны. Так, расстояние от точки пуска нейтрино до точки их регистрации (более 730 км) известно с точностью до 20 см, а время пролета измеряется с точностью до 10 наносекунд.

Эксперимент OPERA работает с 2006 года. В нем принимают участие примерно 200 физиков из 36 институтов и 13 стран, в том числе и из России.

Мы частенько говорим о том, что скорость света максимальна в нашей Вселенной, и что нет ничего, что могло бы двигаться быстрее скорости света в вакууме. И уж тем более - мы. Приближаясь к околосветовой скорости, объект приобретает массу и энергию, которая либо его разрушает, либо противоречит общей теории относительности Эйнштейна. Допустим, мы поверим в это и будем искать обходные пути (вроде или будем разбираться ), чтобы лететь к ближайшей звезде не 75 000 лет, а пару недель. Но поскольку мало кто из нас обладает высшим физическим образованием, непонятно: почему на улицах говорят, что скорость света максимальна, постоянна и равна 300 000 км/с ?

Есть много простых и интуитивных объяснений, почему все так, но их можно начинать ненавидеть. Поиск в Интернете выведет вас на понятие «релятивистской массы» и на то, что она требует больше сил для ускорения объекта, который и так движется с высокой скоростью. Это привычный способ интерпретации математического аппарата специальной теории относительности, но он вводит многих в заблуждение, и особенно вас, наши дорогие читатели. Поскольку многие из вас (да и нас тоже) пробуют высокую физику на вкус, словно погружая один палец в ее соленую воду, прежде чем войти искупаться. В результате, становится куда более сложной и менее красивой, чем является на самом деле.

Давайте обсудим этот вопрос с точки зрения геометрической интерпретации, которая согласуется с общей теорией относительности. Она менее очевидна, но немногим сложнее, чем рисование стрелочек на бумаге, поэтому многие из вас с полуслова поймут теорию, которая скрывается за абстракциями вроде «силы» и откровенного вранья вроде «релятивистской массы».

Во-первых, давайте определим, что такое направление, чтобы четко обозначить свое место. «Вниз» - это направление. Оно определяется как направление, в котором падают вещи, когда вы их отпускаете. «Вверх» - это направление, противоположное направлению «вниз». Возьмите в руки компас и определите дополнительные направления: север, юг, запад и восток. Все эти направления определяются серьезными дядями как «ортонормированный (или ортогональный) базис», но об этом сейчас лучше не думать. Давайте предположим, что эти шесть направлений являются абсолютными, поскольку они будут существовать там, где мы будем разбирать наш сложный вопрос.

А теперь давайте добавим еще два направления: в будущее и в прошлое. Вы не можете с легкостью двигаться в этих направлениях по собственному желанию, но представить их для вас должно быть достаточно просто. Будущее - это направление, где наступает завтра; прошлое - направление, где находится вчера.

Эти восемь основных направлений - вверх, вниз, север, юг, запад, восток, прошлое и будущее - описывают фундаментальную геометрию Вселенной. Каждую пару этих направлений мы можем назвать «измерением», поэтому мы живем в четырехмерной Вселенной. Другой термин для определения этого четырехмерного понимания будет «пространство-время», но мы постараемся избежать использования этого термина. Просто запомните, что в нашем контексте «пространство-время» будет равнозначно понятию «Вселенная».

Пожалуйте на сцену. Давайте посмотрим на актеров.

Сидя сейчас перед компьютером, вы находитесь в движении. Вы его не чувствуете. Вам кажется, что вы в состоянии покоя. Но это только потому, что все вокруг относительно вас тоже движется. Нет, не подумайте, что мы говорим о том, что Земля кружится вокруг Солнца или Солнце движется по галактике и тянет нас за собой. Это, конечно, так, но мы сейчас не об этом. Под движением мы имеем в виду движение в направлении «будущее».

Представьте, что вы находитесь в вагоне поезда с закрытыми окнами. Вы не можете видеть улицу и, допустим, рельсы настолько безупречны, что вы не чувствуете, едет поезд или нет. Поэтому, просто сидя внутри поезда, вы не можете утверждать, едете вы или нет на самом деле. Выгляните на улицу - и поймете, что пейзаж проносится мимо. Но окна закрыты.

Есть только один способ узнать, двигаетесь вы или нет. Просто сидеть и ждать. Если поезд будет стоять на станции, ничего не произойдет. Но если поезд движется, рано или поздно вы приедете на новую станцию.

В этой метафоре вагон представляет собой все, что мы можем увидеть в окружающем нас мире - дом, кота Ваську, звезды на небе и т.п. «Следующая станция - Завтра».

Если вы будете сидеть неподвижно, а кот Васька безмятежно спать свои положенные в сутки часы, вы не почувствуете движения. Но завтра обязательно придет.

Вот что значит двигаться в направлении будущего. Только время покажет, что правда: движение или стоянка.

Пока вам должно было довольно просто все это представлять. Возможно, сложно думать о времени как о направлении и уж тем более о себе - как о проходящем сквозь время объекте. Но вы поймете. Теперь включите воображение.

Представьте, что когда вы едете в своем автомобиле, случается что-то страшное: отказывают тормоза. По странному совпадению в тот же момент заклинивает газ и коробку передач. Вы не можете ни ускориться, ни остановиться. Единственное, что у вас есть - рулевое колесо. Вы можете изменить направление движения, но не его скорость.

Конечно, первое, что вы сделаете, это попытаетесь въехать в мягкий куст и как-нибудь аккуратно остановить автомобиль. Но давайте пока не будем пользоваться таким приемом. Просто сосредоточимся на особенностях вашего неисправного автомобиля: вы можете изменить направление, но не скорость.

Вот так мы движемся сквозь Вселенную. У вас есть руль, но нет педали. Сидя и читая эту статью, вы катитесь в светлое будущее на максимальной скорости. И когда вы встаете, чтобы сделать себе чайку, вы изменяете направление движения в пространстве-времени, но не его скорость. Если вы будете очень быстро двигаться по пространству, время будет течь немного медленнее.

Это легко представить, нарисовав пару осей на бумаге. Ось, которая будет идти вверх и вниз - это ось времени, вверх - значит в будущее. Горизонтальная ось представляет пространство. Мы можем нарисовать только одно измерение пространства, поскольку лист бумаги двухмерен, но давайте просто представим, что это понятие относится ко всем трем измерениям пространства.

Нарисуйте стрелку с начала оси координат, где они сходятся, и направьте ее вверх вдоль вертикальной оси. Неважно, насколько длинной она будет, просто имейте в виду, что у нее будет только одна длина. Эта стрелка, которая сейчас направлена в будущее, представляет собой величину, которую физики называют «четыре-скоростью». Это скорость вашего передвижения по пространству-времени. Прямо сейчас вы находитесь в неподвижном состоянии, поэтому стрелка направлена только в будущее.

Если вы хотите двигаться сквозь пространство - направо по оси координат - вам нужно изменить вашу четыре-скорость и включить горизонтальный компонент. Получается, вам нужно повернуть стрелку. Но как только вы это сделаете, вы заметите, что стрелка уже не так уверенно указывает наверх, в будущее, как до этого. Теперь вы движетесь сквозь пространство, но вам пришлось пожертвовать движением в будущем, поскольку стрелка четыре-скорости может только вращаться, но никогда не растягиваться или сжиматься.

Отсюда начинается знаменитый эффект «замедления времени», о котором говорят все, хоть немного посвященные в специальную теорию относительности. Если вы движетесь в пространстве, вы не движетесь во времени так быстро, как могли бы, если бы сидели на месте. Ваши часы будут отсчитывать время медленнее, нежели часы человека, который не движется.

А теперь мы подходим к разрешению вопроса, почему фраза «быстрее света» не имеет смысла в нашей вселенной. Смотрите, что происходит, если вы хотите двигаться по пространству как можно быстрее. Вы поворачиваете стрелку четыре-скорости до упора, пока она не будет указывать вдоль горизонтальной оси. Мы помним, что стрелка не может растягиваться. Она может только вращаться. Итак, вы увеличили скорость в пространстве насколько это возможно. Но стало невозможным двигаться еще быстрее. Стрелку некуда повернуть, иначе она станет «прямее прямого» или «горизонтальнее горизонтального». Вот к этому понятию и приравнивайте «быстрее света». Это просто невозможно, как накормить тремя рыбками и семью хлебами огромный народ.

Вот почему в нашей вселенной ничто не может двигаться быстрее света. Потому что фраза «быстрее света» в нашей вселенной эквивалентна фразе «прямее прямого» или «горизонтальнее горизонтального».

Да, у вас осталось несколько вопросов. Почему векторы четыре-скорости могут лишь вращаться, но не растягиваться? На этот вопрос есть ответ, но он связан с инвариантностью скорости света, и мы оставим его на потом. И если вы просто поверите в это, то будете чуть менее информированы по этому вопросу, чем самые блестящие физики, когда-либо существовавшие на нашей планете.

Скептики могут усомниться, почему мы используем упрощенную модель геометрии пространства, говоря об эвклидовых вращениях и кругах. В реальном мире геометрия пространства-времени подчиняется геометрии Минковского, а повороты являются гиперболическими. Но простой вариант объяснения имеет право на жизнь.

Как и простое объяснение тому, .

Как известно, на скорости света двигаются фотоны, частицы света, из которых он состоит. В этом вопросе нам поможет специальная теория относительности.

В фантастических фильмах космические межзвездные корабли поголовно летают почти со скоростью света. Обычно это так называемая фантастами гиперскорость. И писатели, и режиссеры фильмов описывают и показывают его нам практически одинаковым художественным приемом. Чаще всего, что бы корабль совершил стремительный рывок, герои дергают или нажимают кнопку управляющего элемента, и транспортное средство мгновенно ускоряется, разгоняясь практически до скорости света с оглушительным хлопком. Звезды, которые зритель видит за бортом корабля, сначала мелькают, а потом и вовсе вытягиваются в линии. Но так ли выглядят звезды в иллюминаторах космического корабля на гиперскорости на самом деле? Исследователи уверяют, что нет. В реальности пассажиры корабля вместо вытянувшихся в линии звезд увидели бы лишь яркий диск.

Если объект будет двигаться почти со скоростью света, то он может увидеть в действии эффект Доплера. В физике так называют изменение частоты и длины волн из-за быстрого передвижения приемника. Частота света звезд, мелькающих перед зрителем из корабля, увеличится настолько, что сместится из видимого диапазона в рентгеновскую часть спектра. Звезды словно исчезнут! Одновременно уменьшится длина реликтового электромагнитного излучения, оставшегося после Большого Взрыва. Фоновое излучение станет видимым и предстанет светлым диском, затухающим по краям.

А как же выглядит мир со стороны объекта, который достигнет скорости света? Как известно, на таких скоростях двигаются фотоны, частицы света, из которых он состоит. В этом вопросе нам поможет специальная теория относительности. Согласно ей при движении объекта со скоростью света сколь угодно долго, время, затраченное на движение этим объектом, становится равным нолю. Простым языком, если двигаться со скоростью света, то невозможно совершить никакое действие, вроде наблюдения, видения, зрения и так далее. Объект, летящий со скоростью света, фактически ничего не увидит.

Фотоны всегда летят со скоростью света. Они не тратят время на разгон и торможение, поэтому вся их жизнь для них длиться ноль времени. Если бы мы были фотонами, то наши моменты рождения и смерти совпали бы, то есть мы бы просто не осознали, что мир вообще существует. Стоит заметить, что если объект разгонится до скорости света, то его скорость во всех системах отсчета становится равной скорости света. Вот такая фот физика. Применяя специальную теорию относительности, можно сделать вывод, что для объекта, двигающегося со скоростью света, весь окружающий мир предстанет бесконечно сплющенным, а все происходящие в нем события состоятся в один момент времени.

Понравилась статья? Поделитесь ей