Контакты

Справедливо ли утверждать что распространение материковой коры. Земная кора

Типы коры Земли: океаническая, материковая

Кора Земли (твердая оболочка Земли над мантией) состоит из двух типов коры, имеет два типа строения: континентальный и океанический. Разделение литосферы Земли на кору и верхнюю мантию - достаточно условные, зачастую употребляются термины океаническая и континентальная литосфера.

Континентальная кора Земли

Континентальная кора Земли (материковая земная кора, земная кора материков) которая состоит из осадочного, гранитного и базальтового пластов. Земная кора континентов имеет среднюю толщину 35-45 км, максимальную - до 75 км (под горными массивами).

Строение континентальной коры "по-американски" несколько иное. В ней присутствуют слои магматических, осадочных и метаморфических пород.

Континентальная кора имеет еще одно название "сиаль" - т.к. граниты и некоторые другие породы содержат кремний и алюминий - отсюда происхождение термина сиаль: силиций и алюминий, SiAl.

Средняя плотность коры материков - 2,6-2,7 г/см³.

Гнейс является (обычно рыхлой слоистой структыры) метаморфической горной породой, состоит из плагиоклаза, кварца, калиевого полевого шпата и т.п.

Гранит - "кислая магматическая интрузивная горная порода. Состоит из кварца, плагиоклаза, калиевого полевого шпата и слюд" (статья "Гранит", линк - внизу страницы). Граниты состоят из полевых шпатов, кваца. Граниты на других телах солнечной системы не обнаружены.

Океаническая кора Земли

Насколько известно, гранитный слой в коре Земли на дне океанов не обнаружен, осадочный слой коры лежит сразу на базатьтовом слое. Океанический тип коры также называется "сима", в породах преобладают кремний и магния - аналогично сиалю, MgSi.

Толщина коры океанического типа (мощность) - меньше 10 километров, обычно 3-7 километров. Средняя плотность под-океанской земной коры - около 3,3 г/см³.

Считается, что океаническая образуется в срединно-океанических хребтах и поглощается в зонах субдукции (почему, не очень понятно) - как некий транспортер от линии роста в серединном океаническом хребте к континенту.

8. строение минералов и минеральных агрегатов. Генетические типы минералов. Реакционный ряд Боуэна. Полиморфизм и изоморфизм. Парагенезис минералов. Псевдоморфизм минералов
Минерал – природное вещество, состоящее из одного элемента или из закономерного сочетания элементов, образующееся в результате природных процессов, протекающих в глуби земной коры или на поверхности. Каждый минерал имеет определенное строение и обладает присущими ему физическими и химическими характеристиками.
Ряд реакционный (Боуэна)
- эмпирически установленная Боуэном последовательность кристаллизации минералов из магмы в виде двух реакционных рядов:
1. прерывистого ряда фемических минералов: оливин -> ромбический пироксен -> моноклинный пироксен -> амфибол -> биотит;
2. непрерывного ряда салических минералов: основной плагиоклаз -> средний плагиоклаз -> кислый плагиоклаз -> калиевый полевой шпат. Совместная кристаллизация минералов двух рядов протекает с образованием эвтектики и в этом случае последовательность выделения зависит от состава расплава. Предложенные Боуэном реакционные ряды кристаллизации минералов могут нарушаться в зависимости от состава расплава, от температуры, давления и другихусловий.


9. Физические свойства минералов. Химический состав минералов
Цвет . Для большинства минералов цвет изменяется в зависимости от различных примесей.
Цвет черты. Это цвет минерала в порошке. Дело в том, что не все минералы в куске и в порошке имеют одинаковый цвет. Для того чтобы получить порошок, достаточно провести минералом по неглазурованной поверхности фарфоровой пластинки. Цвет черты дают только те минералы, твердость которых ниже твердости фарфоровой пластинки.
Прозрачность. По степени прозрачности, минералы делятся на группы: (прозрачные гипс пластинчатый, мусковит, галит), через которые ясно просматриваются предметы; полупрозрачные через которые видны лишь контуры предметов; просвечивающие, которые пропускают свет, а контуры предметов неразличимы; непрозрачны, через которые свет не проходит.
Блеск. Различают блеск металлический и неметаллический.
Спайность . Под спайностью понимается способность минерала раскалываться в определенных направлениях, образуя при этом ровные или зеркально-ровные блестящие плоскости спайности. Различают несколько видов спайности: весьма совершенная, совершенная, средняя или ясная и несовершенная.
Излом - это вид поверхности, образующейся при разламывании минерала. Излом может быть: 1)ровный - чаще всего у минералов с совершенной спайностью (кальцит, галит); 2)неровный - характеризующийся неровной поверхностью без блестящих, спайных участков (апатит); 3)занозистый - характерен для минералов волокнистого сложения (Гипс волокнистый, роговая обманка); 4)зернистый - присущ минералам зернистого строения (оливин); 5)раковистый - очень характерен для минералов окислов кремния (кварц, халцедон, опал); 6) крючковатый (малахит, самородная медь); 7) землистый (каолин, фосфорит).
Твердость . Под твердостью понимается сопротивление, которое оказывает минерал другому минералу или телу, врезающемуся в него. Это важнейший признак, так как является наиболее постоянным.
Плотность. В полевых условиях минералы по плотности делятся на три группы: легкие (до 2,5), средние (2,5 - 4,0) и тяжелые (больше 4). К легким относятся гипс, графит, опал, галит; к средним - кварц, корунд, лимонит, кальцит, магнезит; к тяжелым - пирит, халькопирит, магнезит, золото, серебро. Самой распространенной является группа минералов среднего удельного веса.
Вкус.
0птические свойства. Двойным лучепреломлением обладает разновидность кальцита - исландский шпат, лабрадор обладает синим отливом на плоскостях спайности.
Основой классификации минералов является химический состав минералов. По этому признаку различают такиеклассы минералов- Силикаты- Оксиды- Гидрооксиды (гидроокислы)- Карбонаты- Сульфаты- Сульфиды- Фосфаты- Галоиды- Самородные элементы- Органические соединения

10.Важнейшие диагностические признаки минералов
Важнейшими харатеристиками минералов являются их кристаллическая структура и химический состав. Все остальные свойства минералов вытекают из них или с ними взаимосвязаны. Основные свойства минералов, являющиеся диагностическими признаками и позволяющие их определять, следующие:
-Облик кристаллов и форма граней - обусловлены в первую очередь строением кристаллической решётки.
-Твердость . Определяется по шкале Мооса
-Блеск - световой эффект, вызываемый отражением части светового потока, падающего на минерал. Зависит от отражательной способности минерала.
-Спайность - способность минерала раскалываться по определенным кристаллографическим направлениям.
-Излом - специфика поверхности минерала на свежем не спайном сколе.
-Цвет - признак, с определённостью характеризующий одни минералы (зелёный малахит, синий лазурит, красная киноварь), и очень обманчивый у ряда других минералов, окраска которых может варьировать в широком диапазоне в зависимости от наличия примесей элементов-хромофоров либо специфических дефектов в кристаллической структуре (флюориты, кварцы, турмалины).
-Цвет черты - цвет минерала в тонком порошке, обычно определяемый царапанием по шершавой поверхности фарфорового бисквита.
Магнитность - зависит от содержания главным образом двухвалентного железа, обнаруживается при помощи обычного магнита.
Побежалость - тонкая цветная или разноцветная плёнка, которая образуется на выветрелой поверхности некоторых минералов за счёт окисления.
Хрупкость - прочность минеральных зёрен (кристаллов), обнаруживающаяся при механическом раскалывании. Хрупкость иногда увязывают или путают с твёрдостью, что неверно. Иные очень твёрдые минералы могут с лёгкостью раскалываться, т.е. быть хрупкими (например, алмаз)
Эти свойства минералов легко определяются в полевых условиях.

11. Породообразующие и рудообразующие минерал
Породообразующие минералы – это составные части горных пород, отличающиеся друг от друга по химическому составу и физическим свойствам.
Среди породообразующих минералов различаются:
-Характерные, типоморфные минаралы, имеющие исключительно магматическое, осадочное или метаморфическое происхождение.
-Минералы, образующиеся при разных геологических процессах и находящиеся в породах любого генезиса.
Содержащиеся в составе горных пород минералы разделяются на породообразующие и второстепенные. Первые, примерно 40... 50 минералов, участвуют в образовании горных пород и обусловливают их свойства; второстепенные встречаются в них только в виде примесей. Среди породообразующих выделяются первичные и вторичные.
Первичные возникли при формировании пород, вторичные - позднее как продукты видоизменения первичных минералов.
Минералы обладают рядом характерных свойств, оказывающих большое влияние на технические свойства пород, среди которых следует особо выделить твердость, спайность, излом, блеск, окраску, плотность. Эти свойства зависят от строения и прочности связей в кристаллической решетке.
Рудным минералом называют минерал, заключающий какой –либо металл. Лишь немногие металлы встречаются в элементарной форме в самородном состоянии. В основном это золото, платина и серебро. Но абсолютное большинство металлов встречается в минералах в соединении с другими химическими элементами. Это наблюдается-в сульфидах: галенит - руда на свинец, цинк, ртуть,медь пирит
- в оксидах: гематит, магнетит, пиролюзит, касситерит, рутил, хромит.Они являются важным сырьем для получения металлов.
-в карбонатах: сидерит (железистый шпат) FeCO 3 - руда на железо.
Многие руды обладают комплексным характером, так как заключают два и более минералов с разными металлами. Так, в медной руде часто содержится некоторое количество серебра и золота и в значительных количествах железо
Минералы в хозяйственной деятельности человека играют очень важную роль. Многие минералы обладают большой эстетической привлекательностью не только тогда, когда они обработаны как драгоценные камни, но и в натуральном виде. Коллекционный материал.
Многие минералы имеют ценность как рудное сырье. Это качество минералов заключено в их химическом составе, так как именно химический состав определяет, какие элементы могут быть извлечены из минерала посредством плавления или разрушения его структуры другим способом. Такой ценностью обладают, например, халькозин, галенит и сфалерит (сульфиды меди, свинца и цинка), касситерит (оксид олова) и многие другие минералы.

12. генетические типы горных пород, их текстура, структура, вещественный состав
Согласно генетической классификации, горные породы подразделяются на три большие группы: 1)изверженные(магматические), 2)осадочные и 3)метаморфические.
1)Изверженные горные породы образовались из расплавленной магмы, поднявшейся из глубин Земли и отвердевшей при остывании. глубинные породы массивны, плотны и состоят из тесно сросшихся более или менее крупных кристаллов; они обладают большой плотностью, высокими прочностью на сжатие и морозостойкостью, малым водопоглощением и большой теплопроводностью. Глубинные породы имеют зернистое кристаллическое строение, называемое еще гранитным
-Излившиеся породы образовались на поверхности земли при отсутствии давления и при быстром охлаждении магмы. в большинстве случаев излившиеся породы состоят из отдельных хорошо сформированных кристаллов, вкрапленных в основную скрытокристаллическую массу; такое строение называют порфировым. В тех случаях, когда излившиеся породы застывали мощным слоем, их строение было сходно с глубинными породами. Если же слой был сравнительно тонок, то охлаждение происходило быстро и масса их оказывалась стекловатой, а верхние слои излившейся лавы становились пористыми вследствие энергичного выделения газов из магмы при уменьшении давления. Обломочные породы образовались при быстром охлаждении раздробленной, выбрасываемой при извержении вулканов лавы (пемза, вулканический пепел.
2)Осадочные горные породы образовались при осаждении веществ из какой-либо среды, главным образом водной По характеру образования и составу осадочные горные породы делят на три группы: химические, органогенные и механические.
-Химические осадки представляют собой горные породы, образовавшиеся при осаждении минеральных веществ из водных растворов с последующим их уплотнением и цементацией (гипс, ангидрит, известковые туфы и др.).
-Органогенные породы образовались в результате отложения остатков некоторых водорослей и животных организмов с последующим их уплотнением и цементацией (большинство известняков, мел, диатомиты и др.).
-Механические отложения образовались в результате осаждения или накопления рыхлых продуктов при физическом и химическом распаде горных пород. Часть из них подвергалась в дальнейшем цементированию глинистым веществом, железистыми соединениями, карбонатами или другими углеродными цементами, образуя цементированные осадочные породы - конгломераты, брекчии.
3)Метаморфические (видоизм ененные) горные породы образовались в результате более или менее глубокого преобразования изверженных или осадочных горных пород под влиянием высоких температуры и давления, а иногда и химических воздействий.
В этих условиях может происходить перекристаллизация минералов без их плавления; получающиеся при этом породы обычно более плотны, чем исходные осадочные. В процессе метаморфизма происходило изменение структуры горных пород. В большинстве случаев метаморфические породы отличаются сланцеватой структу

13. магматические горные породы, их классификация по хим.и минер. составу, по условиям образования. Понятие об интрузивных, жильных и эффузивных аналогов. Структура и текстура
Образование магматических пород тесно связано со сложнейшими проблемами происхождения магм и строения Земли.
В зависимости от условий образования
-Глубинные - это породы, образовавшиеся при застывании магмы на разной глубине в земной коре.
-Излившиеся породы образовались при вулканической деятельности, излиянии магмы из глубин и затвердении на поверхности.
В основе химической классификации лежит процентное содержание кремнезёма (SiO 2) в породе. 1.ультракислые,2. кислые, 3.средние, 4.основные 5.ультраосновные породы.
Интрузивные. Породы полнокристаллические, с ясно видимыми кристаллами. Слагают батолиты, лакколиты, штоки, силлы, и другие интрузивные тела.
Эффузивные. Плотные или почти плотные порфировые. Слагают лавовые потоки, но также и субвулканические интрузии.
Жильные. Порфировидные или мелко- до микрокристаллических. Слагают жилы, силлы, краевые части интрузий, мелкие интрузии
Структура - существенный признак, определяющий физико-механические свойства породы. Наиболее прочными являются равномерно зернистые породы, тогда как породы такого же минерального состава, но крупнозернистой порфировидной структуры быстрее разрушаются как при механическом воздействии, так и при резких колебаниях температур(см. Практ тетр)
Текстура Все интрузивные породы имеют полнокристаллическую структуру, массивную или пятнистую текстуру, а эффузивные - преимущественно стекловатую, порфировую, скрытокристаллическую структуру, массивную, шлаковую, миндалекаменную текстуры.
Согласно генетической классификации, горные породы подразделяются на три большие группы: изверженные, осадочные и метаморфические.

14. осадочные горные породы, их классификация по происхождениюи вещественному составу. Структуры и текстура осадочных горных пород
Осадочная порода образуется в условиях переотложения продуктов выветривания и разрушения различных горных пород, химического и механического выпадения осадка из воды, жизнедеятельности растений.
Классификация по происхождению:
1) обломочные породы - продукты преимущественно физического выветривания материнских пород и минералов с последующим переносом материала и его отложением в других участках;
2) коллоидно-осадочные породы - результат преимущественно химического разложения с переходом вещества в коллоидальное состояние (коллоидные растворы);
3) хемогенные породы- осадки, выпадающие из водных, преимущественно истинных, растворов - вод морей, океанов, озер и других бассейнов химическим путем, т.е. в результате химических реакций или пересыщения растворов, вызванного различными причинами;
4) биохимические породы, включающие породы, образовавшиеся в ходе химических реакций при участии микроорганизмов, и породы, которые могут иметь двоякое происхождение: химическое и биогенное;
5) органогенные породы, образовавшиеся при участии живых организмов;
Классификация по составу, структура(тетрадь прктич) .
Текстура : -слоистая - порода состоит из неоднородных по составу, цвету, плотности слоев с более или менее хорошо выраженными между ними границами
- пористая - порода с обилием крупных нор, каверн, незаполненных вторичными минералами

15. метаморфические горные породы: минеральный состав,структура, текстура. Фации метаморфизма
Метаморфические горные породы - результат преобразования пород разного генезиса, приводящего к изменению первичной структуры, текстуры и минерального состава в соответствии с новой физико-химической обстановкой. Главными факторами метаморфизма являются эндогенное тепло, всестороннее давление, химическое воздействие газов и флюидов. Постепенность нарастания интенсивности факторов метаморфизма позволяет наблюдать все переходы от первично осадочных или магматических пород к образующимся по ним метаморфическим породам.
СТРУКТУРА: Метаморфические породы обладают полнокристаллической структурой. Размеры кристаллических зерен, как правило, увеличиваются по мере роста температур метаморфизма.
ТЕКСТУРА:- сланцеватая текстура, обусловленная взаимно параллельным расположением минеральных зерен призматической или пластинчатой форм;
- гнейсовая, или гнейсовидная текстура, характеризующаяся чередованием полосок различного минерального состава;
- в случае чередования полос, состоящих из зерен светлых и цветных минералов, текстура называется полосчатой. Внешне эти текстуры напоминают слоистость осадочных пород, но их происхождение связано не с процессом накопления осадков, а с перекристаллизацией и переориентировкой минеральных зерен в условиях ориентированного давления. Все метаморфические породы имеют плотную текстуру.Поскольку сходные по составу, структурам и текстурам метаморфические породы могут образоваться за счет изменения как магматических, так и осадочных пород, .Фа́ция метаморфизма- совокупность метаморфических горных пород различного состава, отвечающих определённым условиям образования по отношению к основным факторам метаморфизма (температуре, литостатическому давлению и парциальным давлениям летучих компонентов во флюидах), участвующих в метаморфических реакциях между минералами.
Виды фаций по названию основных пород:
1. зеленосланцевая и глаукофансланцевая (низкая температура, средние и высокие давления);2. эпидот-амфиболитовая и амфиболитовая (средняя температура, средние и высокие давления);3. гранулитовая и эклогитовая (высокие температура и давление);4. санидинитовая и пироксенроговиковая (очень высокая температура и очень низкое давление).

17. Экзогенные процессы. Выветривание. Экзогенными (внешними) называются процессы, протекающие на земной поверхности или на небольших глубинах в земной коре. Названные процессы осуществляются, например, текучими водами, ледниками, ветром и т.д. Деятельность этих процессов включает два важнейших вида работы: разрушение горных пород и их накопление (аккумуляцию). Характер производимой работы определяется, с одной стороны, скоростью движения и массой геологического агента, а с другой – характером горных поро. Так, чем выше скорость движения и масса геологического агента, тем активнее идет разрушение горных пород и транспортировка обломков. С падением скорости начинается процесс аккумуляции, причем в начале на поверхность оседают самые крупные частицы, а затем все более мелкие. Главными энергетическими источниками экзогенных процессов являются солнечная радиация и сила тяжести. Поскольку солнечная радиация по земной поверхности распределяется зонально и неравномерно, ее приход изменяется по сезонам года, то и деятельность внешних процессов подчиняется тем же закономерностям. Работа внешних сил ведет к такому изменению земной поверхности, которое направлено на изменение форм, созданных процессами внутренними. В конечном итоге, такое изменение ведет к перераспределению горных пород и выравнивание рельефа. То есть, созданные внутренними силами выступы суши разрушаются и понижаются, а сносимые с них обломки горных пород накапливаются в океанах и уменьшают их глубину.
Выветриванием называется совокупность процессов физического и химического разрушения горных пород и минералов. Немаловажную роль при этом играют живые организмы. Выделяют два главных типа выветривания: физическое и химическое. Физическое выветривание ведет к последовательному дроблению горных пород на все более мелкие обломки. Его можно разделить на две группы процессов: выветривания термического и механического. Термическое выветривание происходит в результате резких суточных перепадов температуры, ведущих к расширению пород при нагреве и сжатию при охлаждении. Таким образом, на интенсивность разрушения горных пород влияют: величина суточного перепада температуры; минеральный состав горных пород; окраска горных пород; размер слагающих горные породы минеральных зерен. Наиболее интенсивно температурное выветривание идет на обнаженных высокогорных вершинах и склонах, а также в зоне пустынь, где, в условиях низкой влажности и отсутствия растительности, суточный перепад температур на поверхности горных пород может превышать 60° С. При этом наблюдается процесс десквамации (шелушения) скальных выступов, выражающийся в послойном отделении параллельных поверхности выступа чешуй и пластин горных пород.
Механическое выветривание осуществляется замерзающей водой, а также живыми организмами и ново образующимися минеральными кристаллами. Максимально значение замерзающей в порах и трещинах горных пород воды, которая при этом увеличивается в объеме на 9 - 10% и расклинивает породу на отдельные обломки. Такое выветривание называют морозным. Оно наиболее активно при частых (суточных) переходах температуры через 0° С, наблюдается в высоких и умеренных широтах и выше снеговой границы в горах. Расклинивающее воздействие на горные породы оказывают также корни растений, роющие животные и растущие в порах и трещинах горных пород кристаллы минералов. Химическое выветривание ведет к изменению минерального состава горных пород или полному их растворению. Важнейшими факторами здесь выступают вода, а также содержащиеся в ней кислород, угольная и органические кислоты. Наибольшая активность процессов химического выветривания наблюдается во влажном и жарком климате
В результате выветривания на земной поверхности формируется особый генетический тип отложений – элювий - слой рыхлых неперемещенных продуктов выветривания. Состав и мощность элювия определяются составом первичных горных пород и временным фактором, а также характером процессов выветривания, который, в первую очередь, зависит от климата. Следовательно, в развитии процессов выветривания наблюдаются сезонная ритмичность и широтная зональность. Корой выветривания называют совокупность элювиальных образований верхней части земной коры.

В настоящее время преобладающим большинством геологов, геохимиков, геофизиков и планетологов принимается, что Земля имеет условно сферическое строение с нечёткими границами раздела (или перехода), а сферы – условно мозаично-блоковое. Основные сферы – земная кора, трёхслойная мантия и двухслойное ядро Земли.

Земная кора

Земная кора составляет самую верхнюю оболочку твёрдой Земли. Мощность её колеблется от 0 на некоторых участках срединно-океанических хребтов и океанских разломов до 70-75 км под горными сооружениями Анд, Гималаев и Тибета. Земная кора обладает латеральной неоднородностью , т.е. состав и строение земной коры различны под океанами и континентами. На основании этого выделяются два главных типа коры – океаническая и континентальная и один тип промежуточной коры.

Океаническая кора занимает на Земле около 56% земной поверхности. Мощность её обычно не превышает 5-6 км и максимальна у подножия континентов. В её строении выделяются три слоя.

Первый слой представлен осадочными породами. В основном это глинистые, кремнистые и карбонатные глубоководные пелагические осадки, причём карбонаты с определённой глубины исчезают вследствие растворения. Ближе к континенту появляется примесь обломочного материала, снесённого с суши (континента). Мощность осадков колеблется от ноля в зонах спрединга до 10-15 км вблизи континентальных подножий (в периокеанических прогибах).

Второй слой океанической коры в верхней части (2А) сложен базальтами с редкими и тонкими прослоями пелагических осадков. Базальты нередко обладают подушечной отдельностью (пиллоу-лавы), но отмечаются и покровы массивных базальтов. В нижней части второго слоя (2В) в базальтах развиты параллельные дайки долеритов. Общая мощность второго слоя около 1,5-2 км. Строение первого и второго слоя океанской коры хорошо изучено с помощью подводных аппаратов, драгированием и бурением.

Третий слой океанической коры состоит из полнокристаллических магматических пород основного и ультраосновного состава. В верхней части развиты породы типа габбро, а нижняя часть сложена «полосчатым комплексом», состоящем из чередования габбро и ультрамафитов. Мощность 3-го слоя около 5 км. Он изучен по данным драгирования и наблюдений с подводных аппаратов.

Возраст океанической коры не превышает 180 млн. лет.

При изучении складчатых поясов континентов были выявлены в них фрагменты ассоциаций пород, подобных океанским. Г Штейманом было предложено в начале XX века называть их офиолитовыми комплексами (или офиолитами ) и рассматривать «триаду» пород, состоящую из серпентенизированных ультрамафитов, габбро, базальтов и радиоляритов, как реликты океанической коры. Подтверждения этому были получены только в 60-ые годы XX столетия, после публикаций статьи на эту тему А.В. Пейве.

Континентальная кора распространена не только в пределах континентов, но и в пределах шельфовых зон континентальных окраин и микроконтинентов, расположенных внутри океанских бассейнов. Общая площадь её составляет около 41% земной поверхности. Средняя мощность 35-40 км. На щитах и платформах континентов она варьирует от 25 до 65 км, а под горными сооружениями достигает 70-75 км.

Континентальная кора имеет трёхслойное строение:

Первый слой – осадочный, обычно называется осадочным чехлом. Мощность его колеблется от нуля на щитах, поднятиях фундамента и в осевых зонах складчатых сооружений до 10-20 км в экзогональных впадинах плит платформ, передовых и межгорных прогибах. Он сложен, в основном, осадочными породами континентального или мелководного морского, реже батиального (в глубоководных впадинах) происхождения. В этом осадочном слое возможны покровы и силы магматических пород, образующих трапповые поля (трапповые формации). Возрастной диапазон пород осадочного чехла от кайнозоя до 1,7 млрд. лет. Скорость продольных волн составляет 2,0-5,0 км/с.

Второй слой континентальной коры или верхний слой консолидированной коры выходит на дневную поверхность на щитах, массивах или выступах платформ и в осевых частях складчатых сооружений. Он вскрыт на Балтийском (Фенноскандинавском) щите на глубину более 12 км Кольской сверхглубокой скважиной и на меньшую глубину в Швеции, на Русской плите в Саатлинской уральской скважине, на плите в США, в шахтах Индии и Южной Африки. Он сложен кристаллическими сланцами, гнейсами, амфиболитами, гранитами и гранитогнейсами, и называется гранитогнейсовым или гранитно-метаморфическим слоем. Мощность данного слоя коры достигает 15-20 км на платформах и 25-30 км в горных сооружениях. Скорость продольных волн составляет 5,5-6,5 км/с.

Третий слой или нижний слой консолидированной коры был выделен как гранулито-базитовый слой. Ранее предполагалось, что между вторым и третьим слоем существует чёткая сейсмическая граница, названная по имени её первооткрывателя границей Конрада (К) . Позднее при сейсмических исследованиях стали выделять даже до 2-3 границ К . Кроме того, данные бурения Кольской СГ-3 не подтвердили различие в составе пород при переходе границы Конрада. Поэтому в настоящее время большинство геологов и геофизиков различают верхнюю и нижнюю кору по их отличным реологическим свойствам: верхняя кора более жёсткая, и хрупкая, а нижняя – более пластичная. Тем не менее, на основании состава ксенолитов из трубок взрыва можно полагать, что «гранулито-базитовый» слой содержит гранулиты кислого и основного состава и базиты. На многих сейсмических профилях нижняя кора характеризуется наличием многочисленных отражающих площадок, что также может, вероятно, рассматриваться как наличие пластовых внедрений магматических пород (что-то похожее на трапповые поля). Скорость продольных волн в нижней коре 6,4-7,7 км/с.

Кора переходного типа является разновидностью коры между двумя крайними типами земной коры (океанской и континентальной) и может быть двух типов – субокеанской и субконтинентальной. Субокеанская кора развита вдоль континентальных склонов и подножий и, вероятно, подстилает дно котловин не очень глубоких и широких окраинных и внутренних морей. Мощность её не превышает 15-20 км. Она пронизана дайками и силами основных магматических пород. Субокеанская кора вскрыта скважиной у входа в Мексиканский залив и обнажена на побережье Красного моря. Субконтинентальная кора образуется в том случае, когда океанская кора в энсиматических вулканических дугах превращается в континентальную, но ещё не достигает «зрелости». Она обладает пониженной (менее 25 км) мощностью и более низкой степенью консолидированности. Скорость продольных волн в коре переходного типа не более 5,0-5,5 км/с.

Поверхность Мохоровичича и состав мантии. Граница между корой и мантией достаточно чётко определяется по резкому скачку скоростей продольных волн от 7,5-7,7 до 7,9-8,2 км/сек и она известна как поверхность Мохоровичича (Мохо или М) по имени выделившего её хорватского геофизика.

В океанах она отвечает границе между полосчатым комплексом 3-го слоя и серпентинизированными базит-гипербазитами. На континентах она расположена на глубине 25-65 км и до 75 км в складчатых областях. В ряде структур выделяется до трёх поверхностей Мохо, расстояния между которыми могут достигать нескольких км.

По результатам изучения ксенолитов из лав и кимберлитов из трубок взрыва предполагается, что под континентами в верхней мантии присутствую кроме перидотитов эклогиты (как реликты океанской коры, оказавшиеся в мантии в процессе субдукции?).

Верхняя часть мантии – это «истощённая» («деплетированная») мантия. Она обеднена кремнезёмом, щелочами, ураном, торем, редкими землями и другими некогерентными элементами благодаря выплавлению из неё базальтовых пород земной коры. Она охватывает почти всю её литосферную часть. Глубже она сменяется «неистощенной» мантией. Средний первичный состав мантии близок к шпинелевому лерцолиту или гипотетической смеси перидотита и базальта в пропоции 3:1, которая была названа А.Е. Рингвудом пиролитом .

Слой Голицина или средняя мантия (мезосфера) – переходная зона между верхней и нижней мантией. Простирается он с глубины 410 км, где отмечается резкое возрастание скоростей продольных волн, до глубины 670 км. Возрастание скоростей объясняется увеличением плотности вещества мантии примерно на 10%, в связи с переходом минеральных видов в другие виды с более плотной упаковкой: например, оливина в вадслеит, а затем вадслеита в рингвудит со структурой шпинели; пироксена в гранат.

Нижняя мантия начинается с глубины около 670 км и простирается до глубины 2900 км со слоем D в основании (2650-2900 км), т. е. до ядра Земли. На основании экспериментальных данных предполагается, что она должна быть сложена в основном перовскитом (MgSiO 3) и магнезиовюститом (Fe,Mg)O – продуктами дальнейшего изменения вещества нижней мантии при общем увеличении отношения Fe/Mg.

По последним сейсмотомографическим данным выявлена значительная негомогенность мантии, а также наличие большего количества сейсмических границ (глобальные уровни – 410, 520, 670, 900, 1700, 2200 км и промежуточные – 100, 300, 1000, 2000 км), обусловленных рубежами минеральных преобразований в мантии (Павленкова, 2002; Пущаровский, 1999, 2001, 2005; и др.).

По Д.Ю. Пущаровскому (2005) строение мантии представляется несколько иначе, чем вышеприведённые данные согласно традиционной модели (Хаин, Ломизе, 1995):

Верхняя мантия состоит из двух частей: верхняя часть до 410 км, нижняя часть 410-850 км. Между верхней и средней мантией выделен раздел I – 850-900 км.

Средняя мантия : 900-1700 км. Раздел II – 1700-2200 км.

Нижняя мантия : 2200-2900 км.

Ядро Земли по данным сейсмологии состоит из внешней жидкой части (2900-5146 км) и внутренней твёрдой (5146-6371 км). Состав ядра большинством принимается железным с примесью никеля, серы либо кислорода или кремния. Конвекция во внешнем ядре генерирует главное магнитное поле Земли. Предполагается, что на границе ядра и нижней мантии зарождаются плюмы , которые затем в виде потока энергии или высокоэнергетического вещества поднимаются вверх, формируя в земной коре или на её поверхности магматические породы.

Плюм мантийный узкий, поднимающийся вверх поток твёрдофазного вещества мантии диаметром около100 км, который зарождается в горячем, низкоплотностном пограничном слое, расположенном либо выше сейсмической границы на глубине 660 км, либо рядом с границей ядро-мантия на глубине 2900 км (A.W. Hofmann, 1997). По А.Ф. Грачёву (2000) плюм мантийный – это проявление внутриплитной магматической активности, обусловленное процессами в нижней мантии, источник которой может находиться на любой глубине в нижней мантии, вплоть до границы ядро-мантия (слой «Д»). (В отличие от горячей точки, где проявление внутриплитной магматической активности обусловлено процессами в верхней мантии.) Мантийные плюмы характерны для дивергентных геодинамических режимов. По Дж. Моргану (1971) плюмовые процессы зарождаются ещё под континентами на начальной стадии рифтогенеза (рифтинга). С проявлением мантийного плюма связывается формирование крупных сводовых поднятий (диаметром до 2000 км), в которых происходят интенсивные трещинные излияния базальтов Fe-Ti-типа с коматиитовой тенденцией, умеренно обогащённых лёгкими РЗЭ, с кислыми дифференциатами, составляющими не более 5% от общего объёма лав. Отношения изотопов 3 He/ 4 He(10 -6)>20; 143 Nd/ 144 Nd – 0.5126-0/5128; 87 Sr/ 86 Sr – 0.7042-0.7052. С мантийным плюмом связывается формирование мощных (от 3-5 км до 15-18 км) лавовых толщ архейских зеленокаменных поясов и более поздних рифтогенных структур.

В северо-восточной части Балтийского щита, и на Кольском п-ове в частности, предполагается, что мантийные плюмы обусловили формирование позднеархейских толеитбазальтовых и коматиитовых вулканитов зеленокаменных поясов, позднеархейского щелочногранитного и анортозитового магматизма, комплекса раннепротерозойских расслоенных интрузий и палеозойских щелочно-ультраосновных интрузий (Митрофанов, 2003).

Плюм-тектоника тектоника мантийных струй, связанная с тектоникой плит. Эта связь выражается в том, что субдуцируемая холодная литосфера погружается до границы верхней и нижней мантии (670 км), накапливается там, частично продавливаясь вниз, а затем через 300-400 млн. лет проникает в нижнюю мантию, достигая её границы с ядром (2900 км). Это вызывает изменение характера конвекции во внешнем ядре и его взаимодействия с внутренним ядром (граница между ними на глубине около 4200 км) и, в порядке компенсации притока материала сверху, образование на границе ядро/мантия восходящих суперплюмов. Последние поднимаются до подошвы литосферы, частично испытывая задержку на границе нижней и верхней мантии, а в тектоносфере расщепляются на более мелкие плюмы, с которыми и связан внутриплитный магматизм. Они же, очевидно, стимулируют конвекцию в астеносфере, ответственную за перемещение литосферных плит. Процессы же, происходящие в ядре, японские авторы обозначают в отличие от плейт- и плюм-тектоники, как тектонику роста (growth teсtonics), имея ввиду рост внутреннего, чисто железо-никелевого ядра за счёт внешнего ядра, пополняемого корово-мантиным силикатным материалом.

Возникновение мантийных плюмов, приводящее к образованию обширных провинций плато-базальтов, предшествует рифтогенезу в пределах континентальной литосферы. Дальнейшее развитие может происходить по полному эволюционному ряду, включающему заложение тройных соединений континентальных рифтов, последующее утонение, разрыв материковой коры и начало спрединга. Однако развитие отдельно взятого плюма не может привести к разрыву материковой коры. Разрыв происходит в случае заложения системы плюмов на континенте и далее процесс раскола происходит по принципу продвигающей трещины от одного плюма к другому.

Литосфера и астеносфера

Литосфера состоит из земной коры и части верхней мантии. Это понятие чисто реологическое, в отличие от коры и мантии. Она более жесткая и хрупкая, чем более ослабленная и пластичная подстилающая оболочка мантии, которая была выделена как астеносфера . Мощность литосферы от 3-4 км в осевых частях срединно-океанских хребтов до80-100 км на периферии океанов и 150-200 км и более (до 400 км?) под щитами древних платформ. Глубинные границы (150-200 км и более) между литосферой и астеносферой определяется с большим трудом, либо вовсе не выявляются, что, вероятно, объясняется высокой изостатической уравновешенностью и уменьшением контраста между литосферой и астеносферой в приграничной зоне, обусловленным высоким геотермическим градиентом, уменьшением количества расплава в астеносфере и т.д.

Тектоносфера

Источники тектонических движений и деформаций лежат не в самой литосфере, а в более глубоких уровнях Земли. В них вовлечена вся мантия вплоть до пограничного слоя с жидким ядром. В связи с тем, что источники движений проявляются и в непосредственно подстилающем литосферу более пластичном слое верхней мантии – астеносфере, литосферу и астеносферу нередко объединяют в одно понятие – тектоносферы как области проявления тектонических процессов. В геологическом смысле (по вещественному составу) тектоносфера делится на земную кору и верхнюю мантию до глубины примерно 400 км, а в реологическом смысле – на литосферу и астеносферу. Границы между этими подразделениями, как правило, не совпадают, и литосфера обычно включает кроме коры и какую-то часть верхней мантии.

Происхождение Земли. Как вам уже известно. Земля - небольшое космическое тело, часть Солнечной системы. Как же родилась наша планета? Ответить на этот вопрос пытались еще ученые античного мира. Существует много различных гипотез. С ними вы познакомитесь при изучении астрономии в старших классах.

Из современных взглядов на происхождение Земли наиболее распространена гипотеза О. Ю. Шмидта об образовании Земли из холодного газово-пылевого облака. Частицы этого облака, вращаясь вокруг Солнца, сталкивались, «слипались», образуя сгустки, нараставшие как снежный ком.

Существуют и гипотезы образования планет в результате космических катастроф - мощных взрывов, вызванных распадом звездного вещества. Ученые продолжают искать новые пути решения проблемы происхождения Земли.

Строение материковой и океанической земной коры. Земная кора - самая верхняя часть литосферы. Она представляет собой как бы тонкое «покрывало», под которым скрыты неспокойные земные недра. По сравнению с другими геосферами земная кора кажется тонкой пленкой, в которую обернут земной шар. В среднем толщина земной коры составляет всего 0,6% от длины земного радиуса.

Внешний облик нашей планеты определяют выступы материков и впадины океанов, заполненные водой. Чтобы ответить на вопрос, как они образовались, надо знать различия в строении земной коры. Эти различия вы можете установить по рисунку 8.

  1. Какие три слоя составляют земную кору?
  2. Какова толщина коры у материков? Под океанами?
  3. Выделите два признака, отличающие материковую кору от океанической.

Как же объяснить различия в строении земной коры? Большинство ученых считает, что сначала на нашей планете образовалась кора океанического типа. Под влиянием процессов, происходящих внутри Земли, на ее поверхности образовались складки, т. е. горные участки. Толщина коры увеличилась, образовались выступы материков. Относительно дальнейшего развития материков и впадин океанов существует ряд гипотез. Одни ученые утверждают, что материки неподвижны, другие, наоборот, говорят об их постоянном движении.

В последние годы создана теория строения земной коры, основанная на представлении о литосферных плитах и на гипотезе дрейфа материков, созданной в начале XX в. немецким ученым А. Вегенером. Однако в то время он не мог найти ответа на вопрос о происхождении сил, перемещающих континенты.

Рис. 8. Строение земной коры на материках и под океанами

Плиты литосферы. Согласно теории литосферных плит земная кора вместе с частью верхней мантии не является монолитным панцирем планеты. Она разбита сложной сетью глубоких трещин, которые уходят на большую глубину, достигают мантии. Эти гигантские трещины делят литосферу на несколько очень больших блоков (плит) толщиной от 60 до 100 км. Границы между плитами проходят по срединно-океаническим хребтам - гигантским вздутиям на теле планеты или по глубоководным желобам - ущельям на океаническом дне. Есть такие трещины и на суше. Они проходят по горным поясам вроде Алышй-ско-Гималайского, Уральского и др. Эти горные пояса похожи на «швы на месте залеченных старых ран на теле планеты». На суше есть и «свежие раны» - знаменитые Восточно-Африканские разломы.

Выделяют семь громадных плит и десятки плит поменьше. Большинство плит включает как материковую, так и океаническую кору (рис. 9).

Рис. 9. Плиты литосферы

Плиты лежат на сравнительно мягком, пластичном слое мантии, по которому и происходит их скольжение. Силы, вызывающие движение плит, возникают при перемещении вещества в верхней мантии (рис. 10). Мощные восходящие потоки этого вещества разрывают земную кору, образуя в ней глубинные разломы. Эти разломы есть на суше, но больше всего их в срединно-океанических хребтах на дне океанов, где земная кора тоньше. Здесь расплавленное вещество поднимается из недр Земли и расталкивает плиты, наращивая земную кору. Края разломов отодвигаются друг от друга.

Рис. 10. Предполагаемое движение литосферных плит: 1. Атлантический океан. 2. Срединно-океанический хребет. 3. Погружение плит в мантию. 4. Океанический желоб. 5. Анды. 6. Подъем вещества из мантии

Плиты медленно перемещаются от линии подводных хребтов к линиям желобов со скоростью от 1 до б см в год. Этот факт был установлен в результате сопоставления снимков, сделанных с искусственных спутников Земли. Соседние плиты сближаются, расходятся или скользят одна относительно другой (см. рис. 10). Они плавают на поверхности верхней мантии, как куски льда на поверхности воды.

Если плиты, одна из которых имеет океаническую кору, а другая материковую, сближаются, то покрытая морем плита изгибается, как бы ныряет под континент (см. рис. 10). При этом возникают глубоководные желоба, островные дуги, горные хребты, например Курильский желоб. Японские острова, Анды. Если сближаются две плиты с материковой корой, то их края вместе со всеми накопленными на них осадочными породами сминаются в складки. Так образовались, например, на границе Евразийской и Индо-Австралийской плит Гималаи.

Рис. 11. Изменение очертаний материков в разное время

Согласно теории литосферных плит на Земле когда-то был один материк, окруженный океаном. Со временем на нем возникли глубинные разломы и образовалось два континента - в Южном полушарии Гондвана, а в Северном - Лавразия (рис. 11). Впоследствии и эти материки были разбиты новыми разломами. Образовались современные континенты и новые океаны - Атлантический и Индийский. В основании современных материков лежат древнейшие относительно устойчивые и выровненные участки земной коры - платформы, т. е. плиты, образовавшиеся в далеком геологическом прошлом Земли. При столкновении плит возникли горные сооружения. Некоторые материки сохранили следы столкновения нескольких плит. Площадь их постепенно увеличивалась. Так, например, образовалась Евразия.

Учение о литосферных плитах дает возможность заглянуть и в будущее Земли. Предполагают, что примерно через 50 млн лет разрастутся Атлантический и Индийский океаны, Тихий уменьшится в размерах. Африка сместится на север. Австралия пересечет экватор и придет в соприкосновение с Евразией. Однако это только прогноз, который требует уточнения.

Ученые пришли к выводу, что в местах разрыва и растяжения земной коры в срединных хребтах образуется новая океаническая кора, которая постепенно расползается в обе стороны от породившего ее глубинного разлома. На дне океана работает как бы гигантский конвейер. Он переносит молодые блоки литосферных плит от места их зарождения к континентальным окраинам океанов. Скорость движения маленькая, путь длинный. Поэтому эти блоки достигают берега через 15-20 млн лет. Пройдя этот путь, плита опускается в глубоководный желоб и, «ныряя» под континент, погружается в мантию, из которой она образовалась в центральных частях срединных хребтов. Так замыкается круг жизни каждой литосферной плиты.

Карта строения земной коры. Древние платформы, складчатые горные области, положение срединно-океани-ческпх хребтов, зоны разломов на суше и дне океана, выступы кристаллических пород на материках показаны на тематической карте «Строение земной коры».

Сейсмические пояса Земли. Пограничные области между литосферными плитами называют сейсмическими поясами. Это самые беспокойные подвижные области планеты. Здесь сосредоточено большинство действующих вулканов, происходит не менее 95% всех землетрясений. Сейсмические области протянулись на тысячи километров и совпадают с областями глубинных разломов на суше, в океане - со срединно-океаническими хребтами и глубоководными желобами. На Земле более 800 действующих вулканов, извергающих на поверхность планеты много лавы, газов и водяного пара.

Знания о строении и истории развития литосферы важны для поисков месторождений полезных ископаемых, для составления прогнозов стихийных бедствий, которые связаны с процессами, происходящими в литосфере. Предполагают, например, что именно на границах плит образуются рудные ископаемые, происхождение которых связано с внедрением магматических пород в земную кору.

  1. Какое строение имеет литосфера? Какие явления происходят на границах ее плит?
  2. Как размещаются на Земле сейсмические пояса? Расскажите о землетрясениях и извержениях вулканов, известных вам из сообщений радио, телевидения. газет. Объясните причины этих явлений.
  3. Как следует работать с картой строения земной коры?
  4. Справедливо ли утверждение, что распространение материковой коры совпадает с площадью суши? 5. Где, по вашему мнению, в далеком будущем на Земле могут образоваться новые океаны? Новые материки?

Существует два основных типа земной коры: океанская и материковая. Выделяется также переходный тип земной коры.

Океанская земная кора. Мощность океанской земной коры в современную геологическую эпоху колеблется от 5 до 10 км. Она состоит из следующих трех слоев:

1) верхний тонкий слой морских осадков (мощность не более 1 км);

2) средний базальтовый слой (мощность от 1,0 до 2,5 км);

3) нижний слой габбро (мощность около 5 км).

Материковая (континентальная) земная кора. Материковая земная кора имеет более сложное строение и большую мощность, чем океанская земная кора. Ее мощность в среднем составляет 35-45 км, а в горных странах увеличивается до 70 км. Она состоит также их трех слоев, но существенно отличается от океанской:

1) нижний слой, сложенный базальтами (мощность около 20 км);

2) средний слой занимает основную толщу материковой коры и условно называется гранитным. Он сложен в основном гранитами и гнейсами. Под океаны этот слой не распространяется;

3) верхний слой – осадочный. Его мощность в среднем составляет около 3 км. В некоторых районах мощность осадков достигает 10 км (например, в Прикаспийской низменности). В отдельных районах Земли осадочный слой отсутствует вообще и на поверхность выходят гранитный слой. Такие районы называются щитами (например, Украинский щит, Балтийский щит).

На материках в результате выветривания горных пород образуется геологическая формация, получившая название коры выветривания.

Гранитный слой от базальтового отделен поверхностью Конрада , на которой скорость сейсмических волн возрастает от 6,4 до 7,6 км/ сек.

Граница между земной корой и мантией (как на материках, так и на океанах) проходит по поверхности Мохоровичича (линия Мохо). Скорость сейсмических волн на ней скачкообразно увеличивается до 8 км/ час.

Кроме двух основных типов – океанского и материкового – есть также участки смешанного (переходного) типа.

На материковых отмелях или шельфах кора имеет мощность около 25 км и в целом сходна с материковой корой. Однако в ней может выпадать слой базальта. В Восточной Азии в области островных дуг (Курильские острова, Алеутские острова, Японские острова и др.) земная кора переходного типа. Наконец, весьма сложна и пока мало изучена земная кора срединных океанических хребтов. Здесь нет границы Мохо, и вещество мантии по разломам поднимается в кору и даже на ее поверхность.



Понятие «земная кора» следует отличать от понятия «литосфера». Понятие «литосфера» является более широким, чем «земная кора». В литосферу современная наука включает не только земную кору, но и самую верхнюю мантию до астеносферы, то есть до глубины примерно около 100 км.

Понятие об изостазии . Изучение распределения силы тяжести показало, что все части земной коры – материки, горные страны, равнины – уравновешены на верхней мантии. Это уравновешенное их положение называется изостазией (от лат. isoc - ровный, stasis – положение). Изостатическое равновесие достигается благодаря тому, что мощность земной коры обратно пропорциональна ее плотности. Тяжелая океаническая кора тоньше более легкой материковой.

Изостазия – в сущности это даже и не равновесие, а стремление к равновесию, непрерывно нарушаемое и вновь восстанавливаемое. Так, например, Балтийский щит после стаивания материковых льдов плейстоценового оледенения поднимается примерно на 1 метр в столетие. Площадь Финляндии все время увеличивается за счет морского дна. Территория Нидерландов, наоборот, понижается. Нулевая линия равновесия проходит в настоящее время несколько южнее 60 0 с.ш. Современный Санкт-Петербург находится примерно на 1,5 м выше, чем Санкт-Петербург времен Петра Первого. Как показывают данные современных научных исследований, даже тяжесть больших городов оказывается достаточной для изостатического колебания территории под ними. Следовательно, земная кора в зонах больших городов весьма подвижна. В целом же рельеф земной коры является зеркальным отражением поверхности Мохо, подошвы земной коры: возвышенным участкам соответствуют углубления в мантию, пониженным – более высокий уровень ее верхней границы. Так, под Памиром глубина поверхности Мохо составляет 65 км, а в Прикаспийской низменности – около 30 км.

Термические свойства земной коры . Суточные колебания температуры почвогрунтов распространяются на глубину 1,0 – 1,5 м, а годовые в умеренных широтах в странах с континентальным климатом до глубины 20-30 м. На той глубине, где прекращается влияние годовых колебаний температуры вследствие нагревания земной поверхности Солнцем, находится слой постоянной температуры грунта. Он называется изотермическим слоем . Ниже изотермического слоя в глубь Земли температура повышается, и это вызывается уже внутренней теплотой земных недр. В формировании климатов внутреннее тепло не участвует, но оно служит энергетической основой всех тектонических процессов.

Число градусов, на которое увеличивается температура на каждые 100 м глубины называется геотермическим градиентом . Расстояние в метрах, при опускании на которое температура возрастает на 1 0 С называется геотермической ступенью . Величина геотермической ступени зависит от рельефа, теплопроводности горных пород, близости вулканических очагов, циркуляции подземных вод и др. В среднем геотермическая ступень равна 33 м. В вулканических областях геотермическая ступень может быть равной всего около 5 м, а в геологически спокойных областях (например, на платформах) она может достигать 100 м.

ТЕМА 5. МАТЕРИКИ И ОКЕАНЫ

Материки и части света

Двум качественно различным типам земной коры – материковому и океаническому – соответствуют два основных уровня планетарного рельефа – поверхности материков и ложе океанов.

Структурно-тектонический принцип выделения материков. Принципиально качественное различие материковой и океанической коры, а также некоторые существенные отличия в строении верхней мантии под материками и океанами обязывают выделять континенты не по видимому окружению их океанами, а по структурно-тектоническому принципу.

Структурно-тектонический принцип утверждает, что, во-первых, материк включает в себя материковую отмель (шельф) и материковый склон; во-вторых, в основе каждого материка находится ядро или древняя платформа; в-третьих, каждая материковая глыба изостатически уравновешена в верхней мантии.

С точки зрения структурно-тектонического принципа, материком называется изостатически уравновешенный массив континентальной земной коры, имеющий структурное ядро в виде древней платформы, к которому примыкают более молодые складчатые структуры.

Всего на Земле имеется шесть материков: Евразия, Африка, Северная Америка, Южная Америка, Антарктида и Австралия. В составе каждого материка лежит одна какая-либо платформа и только в основе Евразии их шесть: Восточноевропейская, Сибирская, Китайская, Таримская (Западный Китай, пустыня Такла-Макан), Аравийская и Индостанская. Аравийская и индостанская платформы представляют собой части древней Гондваны, примкнувшие к Евразии. Таким образом, Евразия – гетерогенный аномальный материк.

Границы между материками вполне очевидны. Граница между Северной Америкой и Южной Америкой проходит по Панамскому каналу. Граница между Евразией и Африкой проводится по Суэцкому каналу. Берингов пролив отделяет Евразию от Северной Америки.

Два ряда материков . В современной географии выделяется следующие два ряда материков:

1. Экваториальный ряд материков (Африка, Австралия и Южная Америка).

2. Северный ряд материков (Евразия и Северная Америка).

Вне этих рядов остается Антарктида – самый южный и холодный континент.

Современное расположение материков отражает длительную историю развития материковой литосферы.

Южные материки (Африка, Южная Америка, Австралия и Антарктида) представляют собой части («осколки») единого в палеозое мегаконтинента Гондваны. Северные материки в то время были объединены в другой мегаконтинент – Лавразию. Между Лавразией и Гондваной в палеозое и мезозое находилась система обширных морских бассейнов, получившая название океана Тетис. Океан Тетис протягивался от Северной Африки, через южную Европу, Кавказ, Переднюю Азию, Гималаи в Индокитай и Индонезию. В неогене (около 20 млн. лет назад) на месте этой геосинклинали возник альпийский складчатый пояс.

Соответственно своим большим размерам суперконтинет Гондвана. По закону изостазии, имел мощную (до 50 км) земную кору, которая глубоко погружалась в мантию. Под ними в астеносфере особенно интенсивными боли конвекционные токи, размягченное вещество мантии двигалось активно. Это привело сначала к образованию вздутия в средине континента, а затем к расколу его на отдельные глыбы, которые под действием тех же конвекционных токов стали горизонтально перемещаться. Как доказано математически (Л.Эйлер), перемещение контура на поверхности сферы всегда сопровождается его поворотом. Следовательно, части Гондваны не только перемещались, но и разворачивались в географическом пространстве.

Первый раскол Гондваны произошел на границе триаса и юры (около 190-195 млн. лет назад); отделилась Афро-Америка. Затем на границе юры и мела (около 135-140 млн. лет назад) Южная Америка отделилась от Африки. На границе мезозоя и кайнозоя (около 65-70 млн. лет назад) Индостанская глыба столкнулась с Азией и Антарктида отошла от Австралии. В настоящую геологическую эпоху литосфера, по мнению неомобилистов, разбита на шесть плит0блоков, которые продолжают двигаться.

Распадом Гондваны удачно объясняется форма материков, их геологическое сходство, а также история растительного покрова и животного мира южных материков.

История раскола Лавразии так тщательно, как Гондваны, не изучена.

Понятие о частях света . Кроме геологически обусловленного деления суши на континенты, существует также сложившиеся в процессе культурно-исторического развития человечества деление земной поверхности на отдельные части света. Всего насчитывается шесть частей света: Европа, Азия, Африка, Америка, Австралия с Океанией, Антарктида. На одном материке Евразии располагается две части света (Европа и Азия), а два материка западного полушария (Северная Америка и Южная Америка) образуют одну часть света – Америку.

Граница между Европой и Азией весьма условна и проводится по водораздельной линии Уральского хребта, реке Урал, северной части Каспийского моря и Кума-Манычской впадине. По Уралу и Кавказу проходят линии глубинных разломов, отделяющих Европу от Азии.

Площадь материков и океанов. Площадь суши высчитывается в пределах современной береговой линии. Площадь поверхности земного шара составляет примерно 510, 2 млн. км 2 . Около 361, 06 млн. км 2 занимает Мировой океан, что составляет примерно 70,8 % общей поверхности Земли. На сушу приходится примерно 149, 02 млн. км 2 , что составляет около 29, 2 % поверхности нашей планеты.

Площадь современных материков характеризуется следующими величинами:

Евразия – 53, 45 км 2 , в том числе Азия – 43, 45 млн. км 2 , Европа – 10, 0 млн. км 2 ;

Африка – 30, 30 млн. км 2 ;

Северная Америка – 24, 25 млн. км 2 ;

Южная Америка – 18, 28 млн. км 2 ;

Антарктида – 13, 97 млн. км 2 ;

Австралия – 7, 70 млн. км 2 ;

Австралия с Океанией – 8, 89 км 2 .

Современные океаны имеют площадь :

Тихий океан – 179, 68 млн. км 2 ;

Атлантический океан – 93, 36 млн. км 2 ;

Индийский океан – 74, 92 млн. км 2 ;

Северный Ледовитый океан – 13, 10 млн. км 2 .

Между северными и южными материками в соответствии с различным их происхождением и развитием имеется значительная разница в площади и характере поверхности. Основные географические различия между северными и южными материками сводятся к следующему:

1.Несравнима по величине с другими материками Евразия, которая сосредоточивает более 30 % суши планеты.

2.У северных материков значителен по площади шельф. Особенно значителен шельф в Северном Ледовитом океане и Атлантическом океанах, а также в Желтом, Китайском и Беринговом морях Тихого океана. Южные материки, за исключением подводного продолжения Австралии в Арафурском море, почти лишены шельфа.

3.Большая часть южных материков приходится на древние платформы. В Северной Америке и Евразии древние платформы занимают меньшую часть общей площади, а большая часть приходится на территории, образованные палеозойским и мезозойским горообразованием. В Африке 96 % ее территории приходится на платформенные участки и только 4 % на горы палеозойского и мезозойского возраста. В Азии только 27 % приходится на древние платформы и 77 % на горы различного возраста.

4.Береговая линия южных материков, образованная большей частью трещинами раскола, относительно прямолинейна; полуостровов и материковых островов мало. Для северных же материков характерна исключительно извилистая береговая линия, обилие островов, полуостровов, часто далеко идущих в океан. Из общей площади на острова и полуострова приходится в Европе около 39 %, Северной Америке – 25 %, Азии – 24 %, Африке – 2,1 %, южной Америке – 1,1 % и Австралии (без Океании) – 1,1 %.

Континентальная кора как по составу, так и по строению резко отличается от океанической. Её мощность меняется от 20-25 км под островными дугами и участками с переходным типом коры до 80 км под молодыми складчатыми поясами Земли, например под Андами или Альпийско-Гималайским поясом. В среднем мощность континентальной коры под древними платформами приблизительно равна 40 км, а её масса, включая субконтинентальную кору, достигает 2,2510× 25 г. Рельеф континентальной коры весьма сложен. Однако в нем выделяются обширные заполненные осадками равнины, обычно расположенные над протерозойскими платформами, выступы наиболее древних (архейских) щитов и горные системы более молодого возраста. Рельефу континентальной коры присущи и максимальные перепады высот, достигающие 16-17 км от подножий континентальных склонов в глубоководных желобах до высочайших горных вершин.

Строение континентальной коры очень неоднородное, однако, как и в океанической коре, в её толще, особенно в древних платформах, иногда выделяются три слоя: верхний осадочный и два нижних, сложенных кристаллическими породами. Под молодыми подвижными поясами строение коры оказывается более сложным, хотя общее её расчленение приближается к двухслойному.

Осадочный слой на континентах изучен достаточно полно как с помощью геофизических методов разведки, так и прямым бурением. Строение поверхности консолидированной коры в местах её обнажения на древних щитах изучалось как прямыми геологическими, так и геофизическими методами, а на континентальных платформах, перекрытых осадками, - в основном геофизическими методами исследования. Так, было установлено, что скорости сейсмических волн в слоях земной коры нарастают сверху вниз от 2-3 до 4,5-5,5 км/с в низах осадочной толщи; до 6-6,5 км/с в верхнем слое кристаллических пород и до 6,6-7,0 км/с в нижнем слое коры. Почти повсеместно континентальная кора, как и океаническая, подстилается высокоскоростными породами границы Мохоровичича со скоростями сейсмических волн от 8,0 до 8,2 км/с, но это уже свойства подкоровой литосферы, сложенной породами мантии.

Мощность верхнего осадочного слоя континентальной коры меняется в широких пределах - от нуля на древних щитах до 10-12 и даже 15 км на пассивных окраинах континентов и в краевых прогибах платформ. Средняя мощность осадков на стабильных протерозойских платформах обычно близка к 2-3 км. Среди осадков на таких платформах преобладают глинистые отложения и карбонаты мелководных морских бассейнов. В краевых прогибах и на пассивных окраинах континентов атлантического типа осадочные разрезы обычно начинаются с грубообломочных фаций, сменяемых выше по разрезу песчано-глинистыми отложениями и карбонатами прибрежных фаций. Как в основании, так и в самых верхних частях разрезов осадочных толщ краевых прогибов иногда встречаются хемогенные осадки - эвапориты, отмечающие собой условия осадконакопления в узких полузамкнутых морских бассейнах с аридным климатом. Обычно такие бассейны возникают только на начальной или конечной стадии развития морских бассейнов и океанов, если, конечно, эти океаны и бассейны в моменты своего образования или закрытия располагались в поясах аридного климата. Примерами отложения таких формаций на ранних стадиях формирования океанических бассейнов могут служить эвапориты в основании осадочных разрезов шельфовых зон Африки в Атлантическом океане и соленосные отложения Красного моря. Примерами отложения соленосных формаций, приуроченных к закрывающимся бассейнам, служат эвапориты реногерцинской зоны в Германии и пермские соленосно-гипсоносные толщи в Предуральском краевом прогибе на востоке Русской платформы.

Верхняя часть разреза консолидированной континентальной коры обычно представлена древними, в основном докембрийскими породами гранитогнейсового состава или чередованием гранитоидов с поясами зеленокаменных пород основного состава. Иногда эту часть разреза жесткой коры называют «гранитным» слоем, подчёркивая тем самым преобладание в нем пород гранитоидного ряда и подчинённость базальтоидов. Породы «гранитного» слоя обычно бывают преобразованы процессами регионального метаморфизма до амфиболитовой фации включительно. Верхняя часть этого слоя всегда представляет собой денудационную поверхность, по которой когда-то происходил размыв тектонических структур и магматических образований древних складчатых (горных) поясов Земли. Поэтому вышележащие осадки на коренных породах континентальной коры всегда залегают со структурным несогласием и обычно с большим временным сдвигом по возрасту.

В более глубоких частях коры (приблизительно на глубинах около 15-20 км) часто прослеживается рассеянная и непостоянная граница, вдоль которой скорость распространения продольных волн возрастает примерно на 0,5 км/с. Это так называемая граница Конрада, оконтуривающая сверху нижний слой континентальной коры, иногда условно называемый «базальтовым», хотя определённых данных о его составе у нас ещё очень мало. Скорее всего нижние части континентальной коры сложены породами среднего и основного состава, метаморфизованными до амфиболитовой или даже до гранулитовой фации (при температурах более 600 °С и давлении выше 3-4 кбар). Не исключено, что в основании тех блоков континентальной коры, которые формировались в своё время за счёт столкновений островных дуг, могут залегать фрагменты древней океанической коры, включающие в себя не только основные, но и серпентинизированные ультраосновные породы.

Гетерогенность континентальной коры особенно ярко видна даже при простом взгляде на геологическую карту материков. Обычно отдельные и тесно переплетённые неоднородные по составу и строению блоки коры представляют собой разновозрастные геологические структуры - остатки древних складчатых поясов Земли, последовательно примыкавших друг к другу в процессе роста континентальных массивов. Иногда такие структуры, наоборот, являются следами бывших расколов древних материков (например, авлакогены). Контактируют между собой такие блоки обычно по шовным зонам, часто называемым не очень удачно глубинными разломами.

Проведённые в последнее десятилетие исследования глубинного строения континентальной коры сейсмическим методом отражённых волн с накапливанием сигналов (проект COCORT) показали, что шовные зоны, разделяющие разновозрастные складчатые пояса, представляют собой, как правило, гигантские надвиги-взбросы. Крутые в верхних частях коры надвиговые поверхности с глубиной быстро выполаживаются. По горизонтали такие надвиговые структуры часто прослеживаются на многие десятки и до сотни километров, тогда как по глубине они иногда подходят к самому основанию континентальной коры, маркируя собой древние и ныне уже отмершие зоны поддвига литосферных плит или сопряжённые с ними вторичные надвиги.

Понравилась статья? Поделитесь ей