Контакты

Понятия о типах связей между атомами, валентных состояниях углерода и механизме органических реакций. Ковалентные связи с участием атома углерода Радикал

Продолжение. Начало см. в № 15, 16/2004

Урок 5. Гибридизация
атомных орбиталей углерода

Ковалентная химическая связь образуется при помощи общих связывающих электронных пар по типу:

Образовывать химическую связь, т.е. создавать общую электронную пару с «чужим» электроном от другого атома, могут только неспаренные электроны. Неспаренные электроны при записи электронных формул находятся по одному в клетке-орбитали.
Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома. Электронное облако – это область пространства, в которой с высокой вероятностью может быть обнаружен электрон.
Для согласования электронного строения атома углерода и валентности этого элемента пользуются представлениями о возбуждении атома углерода. В нормальном (невозбужденном) состоянии атом углерода имеет два неспаренных 2р 2 -электрона. В возбужденном состоянии (при поглощении энергии) один из 2s 2 -электронов может переходить на свободную р -орбиталь. Тогда в атоме углерода появляется четыре неспаренных электрона:

Напомним, что в электронной формуле атома (например, для углерода 6 С – 1s 2 2s 2 2p 2) большие цифры перед буквами – 1, 2 – обозначают номер энергетического уровня. Буквы s и р указывают форму электронного облака (орбитали), а цифры справа над буквами говорят о числе электронов на данной орбитали. Все s -орбитали сферические:

На втором энергетическом уровне кроме 2s -орбитали имеются три 2р -орбитали. Эти 2р -орбитали имеют эллипсоидную форму, похожую на гантели, и ориентированы в пространстве под углом 90° друг к другу. 2р -Орбитали обозначают 2р х , 2р y и 2р z в соответствии с осями, вдоль которых эти орбитали расположены.

При образовании химических связей электронные орбитали приобретают одинаковую форму. Так, в предельных углеводородах смешиваются одна s -орбиталь и три р -орбитали атома углерода с образованием четырех одинаковых (гибридных) 3 -орбиталей:

Это – 3 -гибридизация.
Гибридизация – выравнивание (смешивание) атомных орбиталей (s и р ) с образованием новых атомных орбиталей, называемых гибридными орбиталями .

Гибридные орбитали имеют асимметричную форму, вытянутую в сторону присоединяемого атома. Электронные облака взаимно отталкиваются и располагаются в пространстве максимально далеко друг от друга. При этом оси четырех 3-гибридных орбиталей оказываются направленными к вершинам тетраэдра (правильной треугольной пирамиды).
Соответственно углы между этими орбиталями – тетраэдрические, равные 109°28".
Вершины электронных орбиталей могут перекрываться с орбиталями других атомов. Если электронные облака перекрываются по линии, соединяющий центры атомов, то такую ковалентную связь называют сигма()-связью . Например, в молекуле этана С 2 Н 6 химическая связь образуется между двумя атомами углерода перекрыванием двух гибридных орбиталей. Это -связь. Кроме того, каждый из атомов углерода своими тремя 3 -орбиталями перекрывается с s -орбиталями трех атомов водорода, образуя три -связи.

Всего для атома углерода возможны три валентных состояния с различным типом гибридизации. Кроме 3 -гибридизации существует 2 - и -гибридизация.
2 -Гибридизация – смешивание одной s - и двух р -орбиталей. В результате образуются три гибридные 2 -орбитали. Эти 2 -орбитали расположены в одной плоскости (с осями х , у ) и направлены к вершинам треугольника с углом между орбиталями 120°. Негибридизованная
р -орбиталь перпендикулярна к плоскости трех гибридных 2 -орбиталей (ориентирована вдоль оси z ). Верхняя половина р -орбитали находится над плоскостью, нижняя половина – под плоскостью.
Тип 2 -гибридизации углерода бывает у соединений с двойной связью: С=С, С=О, С=N. Причем только одна из связей между двумя атомами (например, С=С) может быть -связью. (Другие связывающие орбитали атома направлены в противоположные стороны.) Вторая связь образуется в результате перекрывания негибридных р -орбиталей по обе стороны от линии, соединяющей ядра атомов.

Ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей соседних углеродных атомов, называется пи()-связью .

Образование
-связи

Из-за меньшего перекрывании орбиталей -связь менее прочная, чем -связь.
-Гибридизация – это смешивание (выравнивание по форме и энергии) одной s- и одной
р -орбиталей с образованием двух гибридных -орбиталей. -Орбитали расположены на одной линии (под углом 180°) и направлены в противоположные стороны от ядра атома углерода. Две
р -орбитали остаются негибридизованными. Они размещены взаимно перпендикулярно
направлениям -связей. На рисунке -орбитали показаны вдоль оси y , а негибридизованные две
р -орбитали– вдоль осей х и z .

Тройная углерод-углеродная связь СС состоит из -связи, возникающей при перекрывании
sp -гибридных орбиталей, и двух -связей.
Взаимосвязь таких параметров атома углерода, как число присоединенных групп, тип гибридизации и типы образуемых химических связей, показана в таблице 4.

Таблица 4

Ковалентные связи углерода

Число групп,
связанных
с углеродом
Тип
гибридизации
Типы
участвующих
химических связей
Примеры формул соединений
4 sp 3 Четыре - связи
3 sp 2 Три - связи и
одна - связь
2 sp Две - связи
и две -связи

H–CC–H

Упражнения .

1. Какие электроны атомов (например, углерода или азота) называют неспаренными?

2. Что означает понятие «общие электронные пары» в соединениях с ковалентной связью (например, СН 4 или Н 2 S)?

3. Какие электронные состояния атомов (например, С или N) называют основными, а какие возбужденными?

4. Что означают цифры и буквы в электронной формуле атома (например, С или N)?

5. Что такое атомная орбиталь? Сколько орбиталей на втором энергетическом уровне атома С и чем они различаются?

6. В чем отличие гибридных орбиталей от исходных орбиталей, из которых они образовались?

7. Какие типы гибридизации известны для атома углерода и в чем они заключаются?

8. Нарисуйте картинку пространственного расположения орбиталей для одного из электронных состояний атома углерода.

9. Какие химические связи называют и какие ? Укажите - и -связи в соединениях:

10. Для атомов углерода приведенных ниже соединений укажите: а) тип гибридизации; б) типы его химических связей; в) валентные углы.

Ответы на упражнения к теме 1

Урок 5

1. Электроны, которые находятся по одному на орбитали, называют неспаренными электронами . Например, в электронографической формуле возбужденного атома углерода – четыре неспаренных электрона, а у атома азота – три:

2. Два электрона, участвующие в образовании одной химической связи, называют общей электронной парой . Обычно до образования химической связи один из электронов этой пары принадлежал одному атому, а другой электрон – другому атому:

3. Электронное состояние атома, в котором соблюдается порядок заполнения электронных орбиталей: 1s 2 , 2s 2 , 2p 2 , 3s 2 , 3p 2 , 4s 2 , 3d 2 , 4p 2 и т.д., называют основным состоянием . В возбужденном состоянии один из валентных электронов атома занимает свободную орбиталь с более высокой энергией, такой переход сопровождается разъединением спаренных электронов. Схематически это записывают так:

Тогда как в основном состоянии было только два валентных неспаренных электрона, то в возбужденном состоянии таких электронов становится четыре.

5. Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра данного атома. На втором энергетическом уровне атома углерода четыре орбитали – 2s , 2р x , 2р y , 2р z . Эти орбитали различаются:
а) формой электронного облака (s – шар, р – гантель);
б) р -орбитали имеют разную ориентацию в пространстве – вдоль взаимно перпендикулярных осей x , y и z , их обозначают р x , р y , р z .

6. Гибридные орбитали отличаются от исходных (негибридных) орбиталей формой и энергией. Например, s -орбиталь – форма сферы, р – симметричная восьмерка, sp -гибридная орбиталь – асимметричная восьмерка.
Различия по энергии: E (s ) < E () < E (р ). Таким образом, sp -орбиталь – усредненная по форме и энергии орбиталь, полученная смешиванием исходных s - и p -орбиталей.

7. Для атома углерода известны три типа гибридизации: sp 3 , sp 2 и sp (см. текст урока 5 ).

9. -связь – ковалентная связь, образующаяся путем лобового перекрывания орбиталей по линии, соединяющей центры атомов.
-связь – ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей по обе стороны от линии, соединяющей центры атомов.
-Связи показывают второй и третьей черточкой между соединенными атомами.

ГЛАВА 2. ХИМИЧЕСКАЯ СВЯЗЬ И ВЗАИМНОЕ ВЛИЯНИЕ АТОМОВ В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ

ГЛАВА 2. ХИМИЧЕСКАЯ СВЯЗЬ И ВЗАИМНОЕ ВЛИЯНИЕ АТОМОВ В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ

Химические свойства органических соединений обусловлены типом химических связей, природой связываемых атомов и их вза- имным влиянием в молекуле. Эти факторы, в свою очередь, определяются электронным строением атомов и взаимодействием их атомных орбиталей.

2.1. Электронное строение атома углерода

Часть атомного пространства, в котором вероятность нахождения электрона максимальна, называют атомной орбиталью (АО).

В химии широко используется представление о гибридных орбиталях атома углерода и других элементов. Понятие о гибридизации как способе описания перестройки орбиталей необходимо тогда, когда число неспаренных электронов в основном состоянии атома меньше числа образуемых связей. Примером служит атом углерода, который во всех соединениях проявляет себя как четырехвалентный элемент, но в соответствии с правилами заполнения орбиталей на его внешнем электронном уровне в основном состоянии 1s 2 2s 2 2p 2 находятся только два неспаренных электрона (рис. 2.1, а и Приложение 2-1). В этих случаях постулируется, что различные атомные орбитали, близкие по энергии, могут смешиваться между собой, образуя одинаковые по форме и энергии гибридные орбитали.

Гибридные орбитали из-за большего перекрывания образуют более прочные связи по сравнению с негибридизованными орбиталями.

В зависимости от числа вступивших в гибридизацию орбиталей атом углерода может находиться в одном из трех состояний

Рис. 2.1. Распределение электронов по орбиталям у атома углерода в основном (а), возбужденном (б) и гибридизованных состояниях (в - sp 3 , г - sp 2 , д - sp)

гибридизации (см. рис. 2.1, в-д). Тип гибридизации определяет направленность гибридных АО в пространстве и, следовательно, геометрию молекул, т. е. их пространственное строение.

Пространственное строение молекул - это взаимное расположение атомов и атомных групп в пространстве.

sp 3 -Гибридизация. При смешении четырех внешних АО возбужденного атома углерода (см. рис. 2.1, б) - одной 2s- и трех 2p-орбиталей - возникают четыре равноценные sp 3 -гибридные орбитали. Они имеют форму объемной «восьмерки», одна из лопастей которой значительно больше другой.

Каждая гибридная орбиталь заполняется одним электроном. Атом углерода в состоянии sp 3 -гибридизации имеет электронную конфигурацию 1s 2 2(sp 3) 4 (см. рис. 2.1, в). Такое состояние гибридизации характерно для атомов углерода в насыщенных углеводородах (алканах) и соответственно в алкильных радикалах.

Вследствие взаимного отталкивания sp 3 -гибридные АО направлены в пространстве к вершинам тетраэдра, и углы между ними равны 109,5? (наиболее выгодное расположение; рис. 2.2, а).

Пространственное строение изображается с помощью стереохимических формул. В этих формулах sp 3 -гибридизованный атом углерода и две его связи располагают в плоскости чертежа и графически обозначают обычной чертой. Жирной чертой или жирным клином обозначают связь, выходящую вперед из плоскости чертежа и направленную к наблюдателю; пунктирной линией или заштрихованным клином (..........) - связь, уходящую от наблюдателя за плоскость черте-

Рис. 2.2. Виды гибридизации атома углерода. Точка в центре - ядро атома (малые доли гибридных орбиталей для упрощения рисунка опущены; цветом показаны негибридизованные р-АО)

жа (рис. 2.3, а). Атом углерода в состоянии sp 3 -гибридизации имеет тетраэдрическую конфигурацию.

sp 2 -Гибридизация. При смешении одной 2s- и двух 2р-АО возбужденного атома углерода образуются три равноценные sp 2 -гибридные орбитали и остается негибридизованной 2р-АО. Атом углерода в состоянии sp 2 -гибридизации имеет электронную конфигурацию 1s 2 2(sp 2) 3 2p 1 (см. рис. 2.1, г). Такое состояние гибридизации атома углерода характерно для ненасыщенных углеводородов (алкенов), а также для некоторых функциональных групп, например карбонильной и карбоксильной.

sp 2 -Гибридные орбитали располагаются в одной плоскости под углом 120?, а негибридизованная АО находится в перпендикулярной плоскости (см. рис. 2.2, б). Атом углерода в состоянииsp 2 -гибридизации имеет тригональную конфигурацию. Атомы углерода, связанные двойной связью, находятся в плоскости чертежа, а их одинарные связи, направленные к наблюдателю и от него, обозначают, как описано выше (см. рис. 2.3, б).

sp-Гибридизация. При смешении одной 2s- и одной 2р-орбиталей возбужденного атома углерода образуются две равноценные sp-гиб- ридные АО, а две p-АО остаются негибридизованными. Атом углерода в состоянии sp-гибридизации имеет электронную конфигурацию

Рис. 2.3. Стереохимические формулы метана (а), этана (б) и ацетилена (в)

1s 2 2(sp 2) 2 2p 2 (см. рис. 2.1, д). Такое состояние гибридизации атома углерода встречается в соединениях, имеющих тройную связь, например, в алкинах, нитрилах.

sp-Гибридные орбитали располагаются под углом 180?, а две негибридизованные АО - во взаимно перпендикулярных плоскостях (см. рис. 2.2, в). Атом углерода в состоянии sp-гибридизации имеет линейную конфигурацию, например в молекуле ацетилена все четыре атома находятся на одной прямой (см. рис. 2.3, в).

В гибридизованном состоянии могут находиться и атомы других элементов-органогенов.

2.2. Химические связи атома углерода

Химические связи в органических соединениях представлены в основном ковалентными связями.

Ковалентной называют химическую связь, образованную в результате обобществления электронов связываемых атомов.

Эти обобществленные электроны занимают молекулярные орбитали (МО). Как правило, МО является многоцентровой орбиталью и заполняющие ее электроны делокализованы (рассредоточены). Таким образом, МО, как и АО, может быть вакантной, заполненной одним электроном или двумя электронами с противоположными спинами*.

2.2.1. σ- и π -Связи

Существуют два типа ковалентной связи: σ (сигма)- и π (пи)-связи.

σ-Связью называют ковалентную связь, образованную при перекрывании АО по прямой (оси), соединяющей ядра двух связывае- мых атомов с максимумом перекрывания на этой прямой.

σ-Связь возникает при перекрывании любых АО, в том числе и гибридных. На рисунке 2.4 показано образование σ-связи между атомами углерода в результате осевого перекрывания их гибридных sp 3 -АО и σ-связей C-H путем перекрывания гибридной sp 3 -АО углерода и s-АО водорода.

* Подробнее см.: Попков В.А., Пузаков С.А. Общая химия. - М.: ГЭОТАР-Медиа, 2007. - Глава 1.

Рис. 2.4. Образование σ-связей в этане путем осевого перекрывания АО (малые доли гибридных орбиталей опущены, цветом показаны sp 3 -АО углерода, черным - s-АО водорода)

Кроме осевого возможен еще один вид перекрывания - боковое перекрывание p-АО, приводящее к образованию π-связи (рис. 2.5).

р-атомные орбитали

Рис. 2.5. Образование π-связи в этилене путем бокового перекрывания р-АО

π-Связью называют связь, образованную при боковом перекрывании негибридизованных p-АО с максимумом перекрывания по обе стороны от прямой, соединяющей ядра атомов.

Встречающиеся в органических соединениях кратные связи являются сочетанием σ- и π-связей: двойная - одной σ- и одной π-, тройная - одной σ- и двух π-связей.

Свойства ковалентной связи выражаются через такие характеристики, как энергия, длина, полярность и поляризуемость.

Энергия связи - это энергия, выделяющаяся при образовании связи или необходимая для разъединения двух связанных атомов. Она служит мерой прочности связи: чем больше энергия, тем прочнее связь (табл. 2.1).

Длина связи - это расстояние между центрами связанных атомов. Двойная связь короче одинарной, а тройная короче двойной (см. табл. 2.1). Связи между атомами углерода, находящихся в разном состоянии гибридизации, имеют общую закономерность -

Таблица 2.1. Основные характеристики ковалентных связей

с увеличением доли s-орбитали в гибридной орбитали уменьшается длина связи. Например, в ряду соединений пропан CH 3 CH 2 CH 3, пропен CH 3 CH=CH 2, пропин CH 3 C=CH длина связи CH 3 -C соответственно равна 0,154; 0,150 и 0,146 нм.

Полярность связи обусловлена неравномерным распределением (поляризацией) электронной плотности. Полярность молекулы количественно оценивают величиной ее дипольного момента. Из дипольных моментов молекулы можно вычислить дипольные моменты отдельных связей (см. табл. 2.1). Чем больше дипольный момент, тем полярнее связь. Причиной полярности связи служит различие в электроотрицательности связанных атомов.

Электроотрицательность характеризует способность атома в молекуле удерживать валентные электроны. С увеличением электроотрицательности атома возрастает степень смещения в его сторону электронов связи.

Основываясь на значениях энергии связей, американский химик Л. Полинг (1901-1994) предложил количественную характеристику относительной электроотрицательности атомов (шкала Полинга). В этой шкале (ряду) типичные элементы-органогены располагаются по относительной электроотрицательности (для сравнения приведены два металла) следующим образом:

Электроотрицательность не является абсолютной константой элемента. Она зависит от эффективного заряда ядра, вида гибридизации АО и влияния заместителей. Например, электроотрицательность атома углерода, находящегося в состоянии sp 2 - или sp-гибридизации, выше, чем в состоянии sp 3 -гибридизации, что связано с увеличением доли s-орбитали в гибридной орбитали. При переходе атомов из sp 3 - в sp 2 - и далее в sp -гибридизованное состояние постепенно уменьшается протяженность гибридной орбитали (особенно в направлении, обеспечивающем наибольшее перекрывание при образовании σ-связи), а это означает, что в такой же последовательности максимум электронной плотности располагается все ближе к ядру соответствующего атома.

В случае неполярной или практически неполярной ковалентной связи разность в электроотрицательности связанных атомов равна нулю или близка к нулю. С увеличением разности в электроотрицательности возрастает полярность связи. При разности до 0,4 говорят о слабо полярной, более 0,5 - о сильно полярной ковалентной связи и более 2,0 - об ионной связи. Полярные ковалентные связи предрасположены к гетеролитическому разрыву

(см. 3.1.1).

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Электроны тем подвижнее, чем дальше они находятся от ядер атомов. По поляризуемости π-связь значительно превосходит σ-связь, так как максимум электронной плотности π-связи располагается дальше от связываемых ядер. Поляризуемость в значительной мере определяет реакционную способность молекул по отношению к полярным реагентам.

2.2.2. Донорно-акцепторные связи

Перекрывание двух одноэлектронных АО - не единственный путь образования ковалентной связи. Ковалентная связь может образовываться при взаимодействии двухэлектронной орбитали одного атома (донора) с вакантной орбиталью другого атома (акцептора). Донорами служат соединения, содержащие либо орбитали с неподеленной парой электронов, либо π-МО. Носителями неподеленных пар электронов (n-электронов, от англ. non-bonding) являются атомы азота, кислорода, галогенов.

Неподеленные пары электронов играют важную роль в проявлении химических свойств соединений. В частности, они ответственны за способность соединений вступать в донорно-акцепторное взаимо- действие.

Ковалентая связь, образующаяся за счет пары электронов одного из партнеров по связи, называется донорно-акцепторной.

Образовавшаяся донорно-акцепторная связь отличается только способом образования; по свойствам она одинакова с остальными ковалентными связями. Атом-донор при этом приобретает положительный заряд.

Донорно-акцепторные связи характерны для комплексных соединений.

2.2.3. Водородные связи

Атом водорода, связанный с сильно электроотрицательным элементом (азотом, кислородом, фтором и др.), способен взаимодействовать с неподеленной парой электронов другого достаточно электроотрицательного атома этой же или другой молекулы. В результате возникает водородная связь, являющаяся разновидностью донорно-

акцепторной связи. Графически водородную связь обычно обозначают тремя точками.

Энергия водородной связи невелика (10-40 кДж/моль) и в основном определяется электростатическим взаимодействием.

Межмолекулярные водородные связи обусловливают ассоциацию органических соединений, например спиртов.

Водородные связи влияют на физические (температуры кипения и плавления, вязкость, спектральные характеристики) и химические (кислотно-основные) свойства соединений. Так, температура кипения этанола C 2 H 5 OH (78,3 ?С) значительно выше, чем имеющего одинаковую с ним молекулярную массу диметилового эфира CH 3 OCH 3 (-24 ?C), не ассоциированного за счет водородных связей.

Водородные связи могут быть и внутримолекулярными. Такая связь в анионе салициловой кислоты приводит к повышению ее кислотности.

Водородные связи играют важную роль в формировании пространственной структуры высокомолекулярных соединений - бел- ков, полисахаридов, нуклеиновых кислот.

2.3. Сопряженные системы

Ковалентная связь может быть локализованной и делокализованной. Локализованной называют связь, электроны которой фактически поделены между двумя ядрами связываемых атомов. Если электроны связи поделены более чем между двумя ядрами, то говорят о делокализованной связи.

Делокализованная связь - это ковалентная связь, молекулярная орбиталь которой охватывает более двух атомов.

Делокализованные связи в большинстве случаев являются π-связями. Они характерны для сопряженных систем. В этих систе- мах осуществляется особый вид взаимного влияния атомов - сопряжение.

Сопряжение (мезомерия, от греч. mesos - средний) - это выравнивание связей и зарядов в реальной молекуле (частице) по сравнению с идеальной, но не существующей структурой.

Участвующие в сопряжении делокализованные р-орбитали могут принадлежать либо двум π-связям и более, либо π-связи и одному атому с р-орбиталью. В соответствии с этим различают π,π-сопряжение и ρ,π-сопряжение. Система сопряжения может быть открытой или замкнутой и содержать не только атомы углерода, но и гетероатомы.

2.3.1. Системы с открытой цепью сопряжения

π,π-Сопряжение. Простейшим представителем π,π-сопряженных систем с углеродной цепью служит бутадиен-1,3 (рис. 2.6, а). Атомы углерода и водорода и, следовательно, все σ-связи в его молекуле лежат в одной плоскости, образуя плоский σ-скелет. Атомы углерода находятся в состоянии sр 2 -гибридизации. Негибридизованные р-АО каждого атома углерода расположены перпендикулярно плоскости σ-скелета и параллельно друг другу, что является необходимым условием для их перекрывания. Перекрывание происходит не только между р-АО атомов С-1 и С-2, С-3 и С-4, но и между р-АО атомов С-2 и С-3, в результате чего образуется охватывающая четыре атома углерода единая π-система, т. е. возникает делокализованная ковалентная связь (см. рис. 2.6, б).

Рис. 2.6. Атомно-орбитальная модель молекулы бутадиена-1,3

Это отражается в изменении длин связей в молекуле. Длина связи С-1-С-2, а также С-3-С-4 в бутадиене-1,3 несколько увеличена, а расстояние между С-2 и С-3 укорочено по сравнению с обычными двойными и одинарными связями. Другими словами, процесс делокализации электронов приводит к выравниванию длин связей.

Углеводороды с большим числом сопряженных двойных связей распространены в растительном мире. К ним относятся, например, каротины, обусловливающие окраску моркови, томатов и т. п.

Открытая система сопряжения может включать и гетероатомы. Примером открытых π,π-сопряженных систем с гетероатомом в цепи могут служить α,β-ненасыщенные карбонильные соединения. Например, альдегидная группа в акролеине CH 2 =CH-CH=O явля- ется участником цепи сопряжения трех sр 2 -гибридизованных атомов углерода и атома кислорода. Каждый из этих атомов вносит в единую π-систему по одному р-электрону.

pn-Сопряжение. Этот вид сопряжения чаще всего проявляется в соединениях, содержащих структурный фрагмент -CH=CH-X, где X - гетероатом, имеющий неподеленную пару электронов (прежде всего O или N). К ним относятся, например, виниловые эфиры, в молекулах которых осуществляется сопряжение двойной связи с р -орбиталью атома кислорода. Делокализованная трехцен- тровая связь образуется путем перекрывания двух р-АО sр 2 -гиб- ридизованных атомов углерода и одной р -АО гетероатома с парой и-электронов.

Образование аналогичной делокализованной трехцентровой связи имеется в карбоксильной группе. Здесь в сопряжении участвуют π-электроны связи С=О и n-электроны атома кислорода группы ОН. К сопряженным системам с полностью выровненными связями и зарядами относятся отрицательно заряженные частицы, например ацетат-ион.

Направление смещения электронной плотности обозначается изогнутой стрелкой.

Существуют и другие графические способы отображения результатов сопряжения. Так, структура ацетат-иона (I) предполагает, что заряд равномерно распределен по обоим атомам кислорода (как показано на рис. 2.7, что соответствует действительности).

Структуры (II) и (III) применяются в теории резонанса. Согласно этой теории реальная молекула или частица описывается набором определенных так называемых резонансных структур, которые отличаются друг от друга только распределением электронов. В сопряженных системах основной вклад в резонансный гибрид вносят структуры с различным распределением π-электронной плотности (двусторонняя стрелка, связывающая эти структуры, является специальным символом теории резонанса).

Предельные (граничные) структуры в действительности не существуют. Однако они в той или иной степени «вносят вклад» в реальное распределение электронной плотности в молекуле (частице), которую представляют в виде резонансного гибрида, получающегося путем наложения (суперпозиции) предельных структур.

В ρ,π-сопряженных системах с уг- леродной цепью сопряжение может осуществляться при наличии рядом с π-связью атома углерода с негибридизованной р-орбиталью. Такими системами могут быть промежуточные частицы - карбанионы, карбокатионы, свободные радикалы, например, аллильной структуры. Свободнорадикальные аллильные фрагменты играют важную роль в процессах пероксидого окисления липидов.

В аллил-анионе CH 2 =CH-CH 2 sр 2 -гибридизованный атом углерода С-3 поставляет в общую сопряженную

Рис. 2.7. Карта электронной плотности группы COONa в пе- нициллине

систему два электрона, в аллильном радикале CH 2 =CH-CH 2+ - один, а в аллильном карбокатионе CH 2 =CH-CH 2+ не поставляет ни одного. В результате при перекрывании p-АО трех sp 2 -гибридизованных атомов углерода образуется делокализованная трехцентровая связь, содержащая четыре (в карбанионе), три (в свободном радикале) и два (в карбокатионе) электрона соответственно.

Формально атом С-3 в аллил-катионе несет положительный заряд, в аллильном радикале - неспаренный электрон, а в аллил-анионе - отрицательный заряд. В действительности в таких сопряженных системах имеется делокализация (рассредоточение) электронной плотности, что приводит к выравниванию связей и зарядов. Атомы С-1 и С-3 в этих системах равноценны. Например, в аллил-катионе каждый из них несет положительный заряд +1/2 и связан «полуторной» связью с атомом С-2.

Таким образом, сопряжение приводит к существенному различию в распределении электронной плотности в реальных структурах по сравнению со структурами, изображаемыми обычными формулами строения.

2.3.2. Системы с замкнутой цепью сопряжения

Циклические сопряженные системы представляют большой интерес как группа соединений с повышенной термодинамической устой- чивостью по сравнению с сопряженными открытыми системами. Эти соединения обладают и другими особыми свойствами, совокупность которых объединяют общим понятием ароматичность. К ним относятся способность таких формально ненасыщенных соединений

вступать в реакции замещения, а не присоединения, устойчивость к действию окислителей и температуры.

Типичными представителями ароматических систем являются арены и их производные. Особенности электронного строения арома- тических углеводородов наглядно проявляются в атомно-орбитальной модели молекулы бензола. Каркас бензола образуют шесть sp 2 -гибри- дизованных атомов углерода. Все σ-связи (C-C и C-H) лежат в одной плоскости. Шесть негибридизованных р-АО расположены перпендикулярно плоскости молекулы и параллельно друг другу (рис. 2.8, а). Каждая р -АО в равной степени может перекрываться с двумя соседними р -АО. В результате такого перекрывания возникает единая делокализованная π-система, наибольшая электронная плотность в которой находится над и под плоскостью σ-скелета и охватывает все атомы углерода цикла (см. рис. 2.8, б). π-Электронная плотность равномерно распределена по всей циклической системе, что обозначается кружком или пунктиром внутри цикла (см. рис. 2.8, в). Все связи между атомами углерода в бензольном кольце имеют одинаковую длину (0,139 нм), промежуточную между длинами одинарной и двойной связей.

На основании квантовомеханических расчетов установлено, что для образования таких стабильных молекул плоская циклическая система должна содержать (4n + 2) π-электронов, где n = 1, 2, 3 и т. д. (правило Хюккеля, 1931). С учетом этих данных можно конкретизировать понятие «ароматичность».

Соединение ароматично, если оно имеет плоский цикл и сопряженную π -электронную систему, охватывающую все атомы цикла и содержащую (4n + 2) π -электронов.

Правило Хюккеля применимо к любым плоским конденсированным системам, в которых нет атомов, являющихся общими более чем для

Рис. 2.8. Атомно-орбитальная модель молекулы бензола (атомы водорода опущены; объяснение в тексте)

двух циклов. Такие соединения с конденсированными бензольными ядрами, как нафталин и другие, отвечают критериям ароматичности.

Устойчивость сопряженных систем. Образование сопряженной и особенно ароматической системы - энергетически выгодный процесс, так как при этом увеличивается степень перекрывания орбиталей и происходит делокализация (рассредоточение) р -электронов. В связи с этим сопряженные и ароматические системы обладают повышенной термодинамической устойчивостью. Они содержат меньший запас внутренней энергии и в основном состоянии занимают более низкий энергетический уровень по сравнению с несопряженными системами. По разнице этих уровней можно количественно оценить термодинамическую устойчивость сопряженного соединения, т. е. его энергию сопряжения (энергию делокализации). Для бутадиена-1,3 она невелика и составляет около 15 кДж/моль. С увеличением длины сопряженной цепи энергия сопряжения и соответственно термодинамическая устойчивость соединений возрастают. Энергия сопряжения для бензола гораздо больше и составляет 150 кДж/моль.

2.4. Электронные эффекты заместителей 2.4.1. Индуктивный эффект

Полярная σ-связь в молекуле вызывает поляризацию ближайших σ-связей и ведет к возникновению частичных зарядов на соседних атомах*.

Заместители вызывают поляризацию не только «своей», но и соседних σ-связей. Этот вид передачи влияния атомов называют индуктивным эффектом (/-эффект).

Индуктивный эффект - передача электронного влияния заместителей в результате смещения электронов σ-связей.

Из-за слабой поляризуемости σ-связи индуктивный эффект затухает через три-четыре связи в цепи. Его действие наиболее сильно проявляется по отношению к атому углерода, соседнему с тем, у которого находится заместитель. Направление индуктивного эффекта заместителя качественно оценивается путем его сравнения с атомом водорода, индуктивный эффект которого принят за нуль. Графически результат /-эффекта изображают стрелкой, совпадающей с положением валентной черточки и направленной острием в сторону более электроотрицательного атома.

/в\ сильнее, чем атом водорода, проявляет отрицательный индуктив- ный эффект (-/-эффект).

Такие заместители в целом понижают электронную плотность системы, их называют электроноакцепторными. К ним относится большинство функциональных групп: OH, NH 2, COOH, NO 2 и катионных групп, например -NH 3+.

Заместитель, смещающий по сравнению с атомом водорода электронную плотность σ -связи в сторону атома углерода цепи, проявляет положительный индуктивный эффект (+/-эффект).

Такие заместители повышают электронную плотность в цепи (или кольце) и называются электронодонорными. К их числу относятся алкильные группы, находящиеся у sр 2 -гибридизованного атома углерода, и анионные центры в заряженных частицах, например -О - .

2.4.2. Мезомерный эффект

В сопряженных системах в передаче электронного влияния основную роль играют π-электроны делокализованных ковалентных связей. Эффект, проявляющийся в смещении электронной плотности делокализованной (сопряженной) π-системы, называют мезомерным (M-эффект), или эффектом сопряжения.

Мезомерный эффект - передача электронного влияния заместителей по сопряженной системе.

При этом заместитель сам является участником сопряженной системы. Он может вносить в систему сопряжения либо π-связь (карбонильная, карбоксильная группы и др.), либо неподеленную пару электронов гетероатома (амино- и гидроксигруппы), либо вакантную или заполненную одним электроном р-АО.

Заместитель, повышающий электронную плотность в сопряженной системе, проявляет положительный мезомерный эффект (+М- эффект).

М-Эффектом обладают заместители, включаю- щие атомы с неподеленной парой электронов (например, аминогруппа в молекуле анилина) или целым отрицательным зарядом. Эти заместители способны

к передаче пары электронов в общую сопряженную систему, т. е. являются электронодонорными.

Заместитель, понижающий электронную плотность в сопряженной системе, проявляет отрицательный мезомерный эффект (-М- эффект).

М-Эффектом в сопряженной системе обладают атомы кислорода или азота, связанные двойной связью с атомом углерода, как показано на примере акриловой кислоты и бензальдегида. Такие группировки являются электроноакцепторными.


Смещение электронной плотности обозначается изогнутой стрелкой, начало которой показывает, какие р- или π-электроны смещаются, а конец - связь или атом, к которым они смещаются. Мезомерный эффект, в отличие от индуктивного, передается по системе сопряженных связей на значительно большее расстояние.

При оценке влияния заместителей на распределение электронной плотности в молекуле необходимо учитывать результирующее действие индуктивного и мезомерного эффектов (табл. 2.2).

Таблица 2.2. Электронные эффекты некоторых заместителей

Электронные эффекты заместителей позволяют дать качественную оценку распределения электронной плотности в нереагирующей молекуле и прогнозировать ее свойства.

В основном состоянии атом углерода С (1s 2 2s 2 2p 2) имеет два неспаренных электрона, за счет которых могут образовывать только две общие электронные пары. Однако в большинстве своих соединений углерод четырехвалентен. Это объясняется тем, что атом углерода, поглощая небольшое количество энергии, переходит в возбужденное состояние, в котором он имеет 4 неспаренных электрона, т.е. способен образовывать четыре ковалентные связи и принимать участие в формировании четырех общих электронных пар:

6 С 1 s 2 2s 2 2 p 2 6 С * 1 s 2 2s 1 2 p 3

1 p p
s s

Энергия возбуждения компенсируется образованием химических связей, которое происходит с выделением энергии.

Атомы углерода обладают способностью к образованию трех видов гибридизации электронных орбиталей (sp 3 , sp 2 , sp ) и образованию между собой кратных (двойных и тройных) связей (табл.7).

Таблица 7

Типы гибридизации и геометрия молекул

Простая (одинарная) s - связь осуществляется при sp 3 -гибридизации, при которой все четыре гибридных орбитали равноценны и имеют направленность в пространстве под углом 109 о 29 ’ друг к другу и ориентированы к вершинам правильного тетраэдра.

Рис. 19. Образование молекулы метана СН 4

Если гибридные орбитали углерода перекрываются с шарообразными s -орбиталями атома водорода, то образуется простейшее органическое соединение метан СН 4 – предельный углеводород (рис. 19).

Рис. 20. Тетраэдрическое расположение связей в молекуле метана

Большой интерес представляет изучение связей атомов углерода между собой и с атомами других элементов. Рассмотрим строение молекул этана, этилена и ацетилена.

Углы между всеми связями в молекуле этана почти точно равны между собой (рис. 21) и не отличаются от углов С-Н в молекуле метана.

Рис. 21. Молекула этана С 2 Н 6

Следовательно, атомы углерода находятся в состоянии sp 3 -гибридизации.

Гибридизация электронных орбиталей атомов углерода может быть и неполной, т.е. в ней могут участвовать две (sp 2 –гибридизация) или одна (sp -гибридизация) из трех р - орбиталей. В этом случае между атомами углерода образуются кратные (двойная или тройная) связи . Углеводороды с кратными связями называются непредельными или ненасыщенными. Двойная связь (С = С) образуется при sp 2 – гибридизации. В этом случае у каждого из атомов углерода одна из трех р - орбиталей не участвует в гибридизации, в результате образуются три sp 2 – гибридные орбитали, расположенные в одной плоскости под углом 120 о друг к другу, а негибридная 2р -орбиталь располагается перпендикулярно этой плоскости. Два атома углерода соединяются между собой, образуя одну s-связь за счет перекрывания гибридных орбиталей и одну p-связь за счет перекрывания р -орбиталей. Взаимодействие свободных гибридных орбиталей углерода с 1s-орбиталями атомов водорода приводит к образованию молекулы этилена С 2 Н 4 (рис. 22), - простейшего представителя непредельных углеводородов.

Рис. 22. Образование молекулы этилена С 2 Н 4

Перекрывание электронных орбиталей в случае p - связи меньше и зоны с повышенной электронной плотностью лежат дальше от ядер атомов, поэтому эта связь менее прочная, чем s - связь.

Тройная связь образуется за счет одной s - связи и двух p - связей. Электронные орбитали при этом находятся в состоянии sp-гибридизации, образование которой происходит за счет одной s - и одной р - орбиталей (рис. 23).

Рис. 23. Образование молекулы ацетилена С 2 Н 2

Две гибридные орбитали располагаются под углом 180 о относительно друг друга, а оставшиеся негибридные две р -орбитали располагаются в двух взаимно перпендикулярных плоскостях. Образование тройной связи имеет место в молекуле ацетилена С 2 Н 2 .

Особый вид связи возникает при образовании молекулы бензола (С 6 Н 6) – простейшего представителя ароматических углеводородов.

Бензол содержит шесть атомов углерода, связанных между собой в цикл (бензольное кольцо), при этом каждый атом углерода находится в состоянии sp 2 -гибридизации (рис. 24).

Все атомы углерода, входящие в молекулу бензола расположены в одной плоскости. У каждого атома углерода в состоянии sp 2 -гибридизации имеется еще одна негибридная р-орбиталь с неспаренным электроном, которая образует p - связь (рис. 25).

Ось такой р - орбитали расположена перпендикулярно плоскости молекулы бензола.

Рис. 24. sp 2 – орбитали молекулы бензола С 6 Н 6

Рис. 25. - связи в молекуле бензола С 6 Н 6

Все шесть негибридных р-орбиталей образуют общую связывающую молекулярную p - орбиталь, а все шесть электронов объединяются в p - электронный секстет.

Граничная поверхность такой орбитали расположена над и под плоскостью углеродного s - скелета. В результате кругового перекрывания возникает единая делокализованная p - система, охватывающая все углеродные атомы цикла. Бензол схематически изображают в виде шестиугольника с кольцом внутри, которое указывает на то, что имеет место делокализация электронов и соответствующих связей.

В основном состоянии атом углерода С (1s 2 2s 2 2p 2) имеет два неспаренных электрона, за счет которых могут образовать только две общие электронные пары. Однако в большинстве своих соединений углерод четырехвалентен. Это объясняется тем, что атом углерода, поглощая небольшое количество энергии, переходит в возбужденное состояние, в котором он имеет 4 неспаренных электрона, т.е. способен образовывать четыре ковалентные связи и принимать участие в формировании четырех общих электронных пар:

6 С 1s 2 2s 2 2p 2 6 С * 1s 2 2s 1 2p 3 .

1 p p
s s

Энергия возбуждения компенсируется образованием химических связей, которое происходит с выделением энергии.

Атомы углерода обладают способностью к образованию трех видов гибридизации электронных орбиталей (sp 3 , sp 2 , sp ) и образованию между собой кратных (двойных и тройных) связей (табл. 2.2).

Таблица 2.2

Типы гибридизации и геометрия молекул

Простая (одинарная) s- связь осуществляется при sp 3 -гибридизации, при которой все четыре гибридных орбитали равноценны и имеют направленность в пространстве под углом 109°29 ’ друг к другу и ориентированы к вершинам правильного тетраэдра (рис. 2.8).

Рис. 2.8. Образование молекулы метана СН 4

Если гибридные орбитали углерода перекрываются с шарообразными s -орбиталями атома водорода, то образуется простейшее органическое соединение метан СН 4 − предельный углеводород.

Большой интерес представляет изучение связей атомов углерода между собой и с атомами других элементов. Рассмотрим строение молекул этана, этилена и ацетилена.

Углы между всеми связями в молекуле этана почти точно равны между собой (рис. 2.9) и не отличаются от углов С − Н в молекуле метана.

Следовательно, атомы углерода находятся в состоянии sp 3 -гибридизации.

Рис. 2.9. Молекула этана С 2 Н 6

Гибридизация электронных орбиталей атомов углерода может быть и неполной, т.е. в ней могут участвовать две (sp 2 -гибридизация) или одна (sp -гибридизация) из трех р -орбиталей. В этом случае между атомами углерода образуются кратныесвязи (двойная или тройная). Углеводороды с кратными связями называются непредельными или ненасыщенными. Двойная связь (С=С) образуется при sp 2 -гибридизации.

В этом случае у каждого из атомов углерода одна из трех р -орбиталей не участвует в гибридизации, в результате образуются три sp 2 -гибридные орбитали, расположенные в одной плоскости под углом 120° друг к другу, а негибридная 2р -орбиталь располагается перпендикулярно этой плоскости. Два атома углерода соединяются между собой, образуя одну s-связь за счет перекрывания гибридных орбиталей и одну p-связь за счет перекрывания р -орбиталей.

Взаимодействие свободных гибридных орбиталей углерода с 1s -орбиталями атомов водорода приводит к образованию молекулы этилена С 2 Н 4 (рис. 2.10) – простейшего представителя непредельных углеводородов.

Рис. 2.10. Образование молекулы этилена С 2 Н 4

Перекрывание электронных орбиталей в случае p-связи меньше и зоны с повышенной электронной плотностью лежат дальше от ядер атомов, поэтому эта связь менее прочная, чем s-связь.

Тройная связь образуется за счет одной s-связи и двух p-связей. Электронные орбитали при этом находятся в состоянии sp-гибридизации, образование которой происходит за счет одной s - и одной р -орбиталей (рис. 2.11).

Две гибридные орбитали располагаются под углом 180° относительно друг друга, а оставшиеся негибридные две р -орбитали располагаются в двух взаимно перпендикулярных плоскостях. Образование тройной связи имеет место в молекуле ацетилена С 2 Н 2 (см. рис. 2.11).

Рис. 2.11. Образование молекулы ацетилена С 2 Н 2

Особый вид связи возникает при образовании молекулы бензола (С 6 Н 6) – простейшего представителя ароматических углеводородов.

Бензол содержит шесть атомов углерода, связанных между собой в цикл (бензольное кольцо), при этом каждый атом углерода находится в состоянии sp 2 -гибридизации (рис. 2.12).

Рис. 2.12. sp 2 – орбитали молекулы бензола С 6 Н 6

Все атомы углерода, входящие в молекулу бензола расположены в одной плоскости. У каждого атома углерода в состоянии sp 2 -гибридизации имеется еще одна негибридная р-орбиталь с неспаренным электроном, которая образует p-связь (рис. 2.13).

Ось такой р -орбитали расположена перпендикулярно плоскости молекулы бензола.

Все шесть негибридных р -орбиталей образуют общую связывающую молекулярную p-орбиталь, а все шесть электронов объединяются в p-электронный секстет.

Граничная поверхность такой орбитали расположена над и под плоскостью углеродного s-скелета. В результате кругового перекрывания возникает единая делокализованная p-система, охватывающая все углеродные атомы цикла (рис. 2.13).

Бензол схематически изображают в виде шестиугольника с кольцом внутри, которое указывает на то, что имеет место делокализация электронов и соответствующих связей.

Рис. 2.13. -связи в молекуле бензола С 6 Н 6

Ионная химическая связь

Ионная связь − химическая связь, образованная в результате взаимного электростатического притяжения противоположно заряженных ионов, при котором устойчивое состояние достигается путем полного перехода общей электронной плотности к атому более электроотрицательного элемента.

Чисто ионная связь есть предельный случай ковалентной связи.

На практике полный переход электронов от одного атома к другому атому по связи не реализуется, поскольку каждый элемент имеет большую или меньшую (но не нулевую) ЭО, и любая химическая связь будет в некоторой степени ковалентной.

Такая связь возникает в случае большой разности ЭО атомов, например, между катионами s -металлов первой и второй групп периодической системы и анионами неметаллов VIА и VIIА групп (LiF, NaCl, CsF и др.).

В отличие от ковалентной связи, ионная связь не обладает направленностью . Это объясняется тем, что электрическое поле иона обладает сферической симметрией, т.е. убывает с расстоянием по одному и тому же закону в любом направлении. Поэтому взаимодействие между ионами независимо от направления.

Взаимодействие двух ионов противоположного знака не может привести к полной взаимной компенсации их силовых полей. В силу этого у них сохраняется способность притягивать ионы противоположного знака и по другим направлениям. Следовательно, в отличие от ковалентной связи, ионная связь характеризуется также ненасыщаемостью .

Отсутствие у ионной связи направленности и насыщаемости обуславливает склонность ионных молекул к ассоциации. Все ионные соединения в твердом состоянии имеют ионную кристаллическую решетку, в которой каждый ион окружен несколькими ионами противоположного знака. При этом все связи данного иона с соседними ионами равноценны.

Металлическая связь

Металлы характеризуются рядом особых свойств: электро- и теплопроводностью, характерным металлическим блеском, ковкостью, высокой пластичностью, большой прочностью. Эти специфические свойства металлов можно объяснить особым типом химической связи, получившей название металлической .

Металлическая связь – результат перекрывания делокализованных орбиталей атомов, сближающихся между собой в кристаллической решетке металла.

У большинства металлов на внешнем электронном уровне имеется значительное число вакантных орбиталей и малое число электронов.

Поэтому энергетически более выгодно, чтобы электроны не были локализованы, а принадлежали всему атому металла. В узлах решетки металла находятся положительно заряженные ионы, которые погружены в электронный «газ», распределенный по всему металлу:

Me ↔ Me n + + n .

Между положительно заряженными ионами металла (Me n +) и нелокализованными электронами (n ) существует электростатическое взаимодействие, обеспечивающее устойчивость вещества. Энергия этого взаимодействия является промежуточной между энергиями ковалентных и молекулярных кристаллов. Поэтому элементы с чисто металлической связью (s -, и p -элементы) характеризуются относительно высокими температурами плавления и твердостью.

Наличие электронов, которые свободно могут перемещаться по объему кристалла, и обеспечивают специфические свойства ме-

Водородная связь

Водородная связьособый тип межмолекулярного взаимодействия. Атомы водорода, которые ковалентно связаны с атомом элемента, имеющего высокое значение электроотрицательности (чаще всего F, O, N, а также Cl, S и C), несут на себе относительно высокий эффективный заряд. Вследствие этого такие атомы водорода могут электростатически взаимодействовать с атомами указанных элементов.

Так, атом Н d + одной молекулы воды ориентируется и соответственно взаимодействует (что показано тремя точками) с атомом О d - другой молекулы воды:

Связи, образуемые атомом Н, находящимся между двумя атомами электроотрицательных элементов, называются водородными:

d- d+ d-

А − Н ××× В

Энергия водородной связи значительно меньше энергии обычной ковалентной связи (150–400 кДж/моль), однако этой энергии достаточно, чтобы вызвать агрегацию молекул соответствующих соединений в жидком состоянии, например, в жидком фтороводороде НF (рис. 2.14). Для соединений фтора она достигает порядка 40 кДж/моль.

Рис. 2.14. Агрегация молекул НF за счет водородных связей

Длина водородной связи также меньше длины ковалентной связи. Так, в полимере (HF) n длина связи F−H=0,092 нм, а связи F∙∙∙H= 0,14 нм. У воды длина связи O−H=0,096 нм, а связи O∙∙∙H=0,177нм.

Образование межмолекулярных водородных связей приводит к существенному изменению свойств веществ: повышению вязкости, диэлектрической постоянной, температур кипения и плавления.


Похожая информация.


Понравилась статья? Поделитесь ей