Контакты

Химические вещества. Вещество в химии - это что? Свойства веществ

Классификация неорганических веществ и их номенклатура основаны на наиболее простой и постоянной во времени характеристике - химическом составе , который показывает атомы элементов, образующих данное вещество, в их числовом отношении. Если вещество из атомов одного химического элемента, т.е. является формой существования этого элемента в свободном виде, то его называют простым веществом ; если же вещество из атомов двух или большего числа элементов, то его называют сложным веществом . Все простые вещества (кроме одноатомных) и все сложные вещества принято называть химическими соединениями , так как в них атомы одного или разных элементов соединены между собой химическими связями.

Номенклатура неорганических веществ состоит из формул и названий. Химическая формула - изображение состава вещества с помощью символов химических элементов, числовых индексов и некоторых других знаков. Химическое название - изображение состава вещества с помощью слова или группы слов. Построение химических формул и названий определяется системой номенклатурных правил .

Символы и наименования химических элементов приведены в Периодической системе элементов Д.И. Менделеева. Элементы условно делят на металлы инеметаллы . К неметаллам относят все элементы VIIIА-группы (благородные газы) и VIIА-группы (галогены), элементы VIА-группы (кроме полония), элементы азот, фосфор, мышьяк (VА-группа); углерод, кремний (IVА-группа); бор (IIIА-группа), а также водород. Остальные элементы относят к металлам.

При составлении названий веществ обычно применяют русские наименования элементов, например, дикислород, дифторид ксенона, селенат калия. По традиции для некоторых элементов в производные термины вводят корни их латинских наименований:

Например : карбонат, манганат, оксид, сульфид, силикат.

Названия простых веществ состоят из одного слова - наименования химического элемента с числовой приставкой, например:

Используются следующие числовые приставки :

Неопределенное число указывается числовой приставкой n - поли.

Для некоторых простых веществ используют также специальные названия, такие, как О 3 - озон, Р 4 - белый фосфор.

Химические формулы сложных веществ составляют из обозначения электроположительной (условных и реальных катионов) и электроотрицательной (условных и реальных анионов) составляющих, например, CuSO 4 (здесь Cu 2+ - реальный катион, SO 4 2 - - реальный анион) и PCl 3 (здесь P +III - условный катион, Cl -I - условный анион).

Названия сложных веществ составляют по химическим формулам справа налево. Они складываются из двух слов - названий электроотрицательных составляющих (в именительном падеже) и электроположительных составляющих (в родительном падеже), например:

CuSO 4 - сульфат меди(II)
PCl 3 - трихлорид фосфора
LaCl 3 - хлорид лантана(III)
СО - монооксид углерода

Число электроположительных и электроотрицательных составляющих в названиях указывают числовыми приставками, приведенными выше (универсальный способ), либо степенями окисления (если они могут быть определены по формуле) с помощью римских цифр в круглых скобках (знак плюс опускается). В ряде случаев приводят заряд ионов (для сложных по составу катионов и анионов), используя арабские цифры с соответствующим знаком.

Для распространенных многоэлементных катионов и анионов применяют следующие специальные названия:

H 2 F + - фтороний

C 2 2 - - ацетиленид

H 3 O + - оксоний

CN - - цианид

H 3 S + - сульфоний

CNO - - фульминат

NH 4 + - аммоний

HF 2 - - гидродифторид

N 2 H 5 + - гидразиний(1+)

HO 2 - - гидропероксид

N 2 H 6 + - гидразиний(2+)

HS - - гидросульфид

NH 3 OH + - гидроксиламиний

N 3 - - азид

NO + - нитрозил

NCS - - тиоционат

NO 2 + - нитроил

O 2 2 - - пероксид

O 2 + - диоксигенил

O 2 - - надпероксид

PH 4 + - фосфоний

O 3 - - озонид

VO 2 + - ванадил

OCN - - цианат

UO 2 + - уранил

OH - - гидроксид

Для небольшого числа хорошо известных веществ также используют специальные названия:

1. Кислотные и основные гидроксиды. Соли

Гидроксиды - тип сложных веществ, в состав которых входят атомы некоторого элемента Е (кроме фтора и кислорода) и гидроксогруппы ОН; общая формула гидроксидов Е(ОН) n , где n = 1÷6. Форма гидроксидов Е(ОН) n называется орто -формой; при n > 2 гидроксид может находиться также в мета -форме, включающей кроме атомов Е и групп ОН еще атомы кислорода О, например Е(ОН) 3 и ЕО(ОН), Е(ОН) 4 и Е(ОН) 6 и ЕО 2 (ОН) 2 .

Гидроксиды делят на две противоположные по химическим свойствам группы: кислотные и основные гидроксиды.

Кислотные гидроксиды содержат атомы водорода, которые могут замещаться на атомы металла при соблюдении правила стехиометрической валентности. Большинство кислотных гидроксидов находится в мета -форме, причем атомы водорода в формулах кислотных гидроксидов ставят на первое место, например H 2 SO 4 , HNO 3 и H 2 CO 3 , а не SO 2 (OH) 2 , NO 2 (OH) и CO(OH) 2 . Общая формула кислотных гидроксидов - Н х ЕО у , где электроотрицательную составляющую ЕО у х - называют кислотным остатком. Если не все атомы водорода замещены на металл, то они остаются в составе кислотного остатка.

Названия распространенных кислотных гидроксидов состоят из двух слов: собственного названия с окончанием "ая" и группового слова "кислота". Приведем формулы и собственные названия распространенных кислотных гидроксидов и их кислотных остатков (прочерк означает, что гидроксид не известен в свободном виде или в кислом водном растворе):

кислотный гидроксид

кислотный остаток

HAsO 2 - метамышьяковистая

AsO 2 - - метаарсенит

H 3 AsO 3 - ортомышьяковистая

AsO 3 3 - - ортоарсенит

H 3 AsO 4 - мышьяковая

AsO 4 3 - - арсенат

В 4 О 7 2 - - тетраборат

ВiО 3 - - висмутат

HBrO - бромноватистая

BrO - - гипобромит

HBrO 3 - бромноватая

BrO 3 - - бромат

H 2 CO 3 - угольная

CO 3 2 - - карбонат

HClO - хлорноватистая

ClO - - гипохлорит

HClO 2 - хлористая

ClO 2 - - хлорит

HClO 3 - хлорноватая

ClO 3 - - хлорат

HClO 4 - хлорная

ClO 4 - - перхлорат

H 2 CrO 4 - хромовая

CrO 4 2 - - хромат

НCrO 4 - - гидрохромат

H 2 Cr 2 О 7 - дихромовая

Cr 2 O 7 2 - - дихромат

FeO 4 2 - - феррат

HIO 3 - иодноватая

IO 3 - - иодат

HIO 4 - метаиодная

IO 4 - - метапериодат

H 5 IO 6 - ортоиодная

IO 6 5 - - ортопериодат

HMnO 4 - марганцовая

MnO 4 - - перманганат

MnO 4 2 - - манганат

MоO 4 2 - - молибдат

HNO 2 - азотистая

NO 2 - - нитрит

HNO 3 - азотная

NO 3 - - нитрат

HPO 3 - метафосфорная

PO 3 - - метафосфат

H 3 PO 4 - ортофосфорная

PO 4 3 - - ортофосфат

НPO 4 2 - - гидроортофосфат

Н 2 PO 4 - - дигидроотофосфат

H 4 P 2 O 7 - дифосфорная

P 2 O 7 4 - - дифосфат

ReO 4 - - перренат

SO 3 2 - - сульфит

HSO 3 - - гидросульфит

H 2 SO 4 - серная

SO 4 2 - - сульфат

НSO 4 - - гидросульфат

H 2 S 2 O 7 - дисерная

S 2 O 7 2 - - дисульфат

H 2 S 2 O 6 (O 2) - пероксодисерная

S 2 O 6 (O 2) 2 - - пероксодисульфат

H 2 SO 3 S - тиосерная

SO 3 S 2 - - тиосульфат

H 2 SeO 3 - селенистая

SeO 3 2 - - селенит

H 2 SeO 4 - селеновая

SeO 4 2 - - селенат

H 2 SiO 3 - метакремниевая

SiO 3 2 - - метасиликат

H 4 SiO 4 - ортокремниевая

SiO 4 4 - - ортосиликат

H 2 TeO 3 - теллуристая

TeO 3 2 - - теллурит

H 2 TeO 4 - метателлуровая

TeO 4 2 - - метателлурат

H 6 TeO 6 - ортотеллуровая

TeO 6 6 - - ортотеллурат

VO 3 - - метаванадат

VO 4 3 - - ортованадат

WO 4 3 - - вольфрамат

Менее распространенные кислотные гидроксиды называют по номенклатурным правилам для комплексных соединений, например:

Названия кислотных остатков используют при построении названий солей.

Основные гидроксиды содержат гидроксид-ионы, которые могут замещаться на кислотные остатки при соблюдении правила стехиометрической валентности. Все основные гидроксиды находятся в орто -форме; их общая формула М(ОН) n , где n = 1,2 (реже 3,4) и М n + - катион металла. Примеры формул и названий основных гидроксидов:

Важнейшим химическим свойством основных и кислотных гидроксидов является их взаимодействие их между собой с образованием солей (реакция солеобразования ), например:

Ca(OH) 2 + H 2 SO 4 = CaSO 4 + 2H 2 O

Ca(OH) 2 + 2H 2 SO 4 = Ca(HSO 4) 2 + 2H 2 O

2Ca(OH) 2 + H 2 SO 4 = Ca 2 SO 4 (OH) 2 + 2H 2 O

Соли - тип сложных веществ, в состав которых входят катионы М n + и кислотные остатки*.

Соли с общей формулой М х (ЕО у ) n называют средними солями, а соли с незамещенными атомами водорода, - кислыми солями. Иногда соли содержат в своем составе также гидроксид - или(и) оксид - ионы; такие соли называют основными солями. Приведем примеры и названия солей:

Ортофосфат кальция

Дигидроортофосфат кальция

Гидроортофосфат кальция

Карбонат меди(II)

Cu 2 CO 3 (OH) 2

Дигидроксид-карбонат димеди

Нитрат лантана(III)

Оксид-динитрат титана

Кислые и основные соли могут быть превращены в средние соли взаимодействием с соответствующим основным и кислотным гидроксидом, например:

Ca(HSO 4) 2 + Ca(OH) = CaSO 4 + 2H 2 O

Ca 2 SO 4 (OH) 2 + H 2 SO 4 = Ca 2 SO 4 + 2H 2 O

Встречаются также соли, содерхащие два разных катиона: их часто называют двойными солями , например:

2. Кислотные и оснόвные оксиды

Оксиды Е х О у - продукты полной дегидратации гидроксидов:

Кислотным гидроксидам (H 2 SO 4 , H 2 CO 3) отвечают кислотные оксиды (SO 3 , CO 2), а основным гидроксидам (NaOH, Ca(OH) 2) - основные оксиды (Na 2 O, CaO), причем степень окисления элемента Е не изменяется при переходе от гидроксида к оксиду. Пример формул и названий оксидов:

Кислотные и основные оксиды сохраняют солеобразующие свойства соответствующих гидроксидов при взаимодействии с противоположными по свойствам гидроксидами или между собой:

N 2 O 5 + 2NaOH = 2NaNO 3 + H 2 O

3CaO + 2H 3 PO 4 = Ca 3 (PO 4) 2 + 3H 2 O

La 2 O 3 + 3SO 3 = La 2 (SO 4) 3

3. Амфотерные оксиды и гидроксиды

Амфотерность гидроксидов и оксидов - химическое свойство, заключающееся в образовании ими двух рядов солей, например, для гидроксида и оксида алюминия:

(а) 2Al(OH) 3 + 3SO 3 = Al 2 (SO 4) 3 + 3H 2 O

Al 2 O 3 + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 O

(б) 2Al(OH) 3 + Na 2 O = 2NaAlO 2 + 3H 2 O

Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O

Так, гидроксид и оксид алюминия в реакциях (а) проявляют свойства основных гидроксидов и оксидов, т.е. реагируют с кислотными гидроксидам и оксидом, образуя соответствующую соль - сульфат алюминия Al 2 (SO 4) 3 , тогда как в реакциях (б) они же проявляют свойства кислотных гидроксидов и оксидов, т.е. реагируют с основными гидроксидом и оксидом, образуя соль - диоксоалюминат (III) натрия NaAlO 2 . В первом случае элемент алюминий проявляет свойство металла и входит в состав электроположительной составляющей (Al 3+), во втором - свойство неметалла и входит в состав электроотрицательной составляющей формулы соли (AlO 2 -).

Если указанные реакции протекают в водном растворе, то состав образующихся солей меняется, но присутствие алюминия в катионе и анионе остаётся:

2Al(OH) 3 + 3H 2 SO 4 = 2 (SO 4) 3

Al(OH) 3 + NaOH = Na

Здесь квадратными скобками выделены комплексные ионы 3+ - катион гексаакваалюминия(III), - - тетрагидроксоалюминат(III)-ион.

Элементы, проявляющие в соединениях металлические и неметаллические свойства, называют амфотерными, к ним относятся элементы А-групп Периодической системы - Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп - Cr, Mn, Fe, Zn, Cd, Au и др. Амфотерные оксиды называют так же, как и основные, например:

Амфотерные гидроксиды (если степень окисления элемента превышает + II) могут находиться в орто - или (и) мета - форме. Приведем примеры амфотерных гидроксидов:

Амфотерным оксидам не всегда соответствуют амфотерные гидроксиды, поскольку при попытке получения последних образуются гидратированные оксиды, например:

Если амфотерному элементу в соединениях отвечает несколько степеней окисления, то амфотерность соответствующих оксидов и гидроксидов (а следовательно, и амфотерность самого элемента) будет выражена по-разному. Для низких степеней окисления у гидроксидов и оксидов наблюдается преобладание основных свойств, а у самого элемента - металлических свойств, поэтому он почти всегда входит в состав катионов. Для высоких степеней окисления, напротив, у гидроксидов и оксидов наблюдается преобладание кислотных свойств, а у самого элемента - неметаллических свойств, поэтому он почти всегда входит в состав анионов. Так, у оксида и гидроксида марганца(II) доминируют основные свойства, а сам марганец входит в состав катионов типа 2+ , тогда как у оксида и гидроксида марганца(VII) доминируют кислотные свойства, а сам марганец входит в состав аниона типа MnO 4 - . Амфотерным гидроксидам с большим преобладанием кислотных свойств приписывают формулы и названия по образцу кислотных гидроксидов, например НMn VII O 4 - марганцовая кислота.

Таким образом, деление элементов на металлы и неметаллы - условное; между элементами (Na, K, Ca, Ba и др.) с чисто металлическими и элементами (F, O, N, Cl, S, C и др.) с чисто неметаллическими свойствами существует большая группа элементов с амфотерными свойствами.

4. Бинарные соединения

Обширный тип неорганических сложных веществ - бинарные соединения. К ним относятся, в первую очередь все двухэлементные соединения (кроме основных, кислотных и амфотерных оксидов), например H 2 O, KBr, H 2 S, Cs 2 (S 2), N 2 O, NH 3 , HN 3 , CaC 2 , SiH 4 . Электроположительная и электроотрицательная составляющие формул этих соединений включают отдельные атомы или связанные группы атомов одного элемента.

Многоэлементные вещества, в формулах которых одна из составляющих содержит не связанные между собой атомы нескольких элементов, а также одноэлементные или многоэлементные группы атомов (кроме гидроксидов и солей), рассматривают как бинарные соединения, например CSO, IO 2 F 3 , SBrO 2 F, CrO(O 2) 2 , PSI 3 , (CaTi)O 3 , (FeCu)S 2 , Hg(CN) 2 , (PF 3) 2 O, VCl 2 (NH 2). Так, CSO можно представить как соединение CS 2 , в котором один атом серы заменен на атом кислорода.

Названия бинарных соединений строятся по обычным номенклатурным правилам, например:

OF 2 - дифторид кислорода

K 2 O 2 - пероксид калия

HgCl 2 - хлорид ртути(II)

Na 2 S - сульфид натрия

Hg 2 Cl 2 - дихлорид диртути

Mg 3 N 2 - нитрид магния

SBr 2 O - оксид-дибромид серы

NH 4 Br - бромид аммония

N 2 O - оксид диазота

Pb(N 3) 2 - азид свинца(II)

NO 2 - диоксид азота

CaC 2 - ацетиленид кальция

Для некоторых бинарных соединений используют специальные названия, список которых был приведен ранее.

Химические свойства бинарных соединений довольно разнообразны, поэтому их часто разделяют на группы по названию анионов, т.е. отдельно рассматривают галогениды, халькогениды, нитриды, карбиды, гидриды и т. д. Среди бинарных соединений встречаются и такие, которые имеют некоторые признаки других типов неорганических веществ. Так, соединения CO, NO, NO 2 , и (Fe II Fe 2 III)O 4 , названия которых строятся с применением слова оксид, к типу оксидов (кислотных, основных, амфотерных) отнесены быть не могут. Монооксид углерода СО, монооксид азота NO и диоксид азота NO 2 не имеют соответствующих кислотных гидроксидов (хотя эти оксиды образованы неметаллами С и N), не образуют они и солей, в состав анионов которых входили бы атомы С II , N II и N IV . Двойной оксид (Fe II Fe 2 III)O 4 - оксид дижелеза(III)-железа(II) хотя и содержит в составе электроположительной составляющей атомы амфотерного элемента - железа, но в двух разных степенях окисления, вследствие чего при взаимодействии с кислотными гидроксидами образует не одну, а две разные соли.

Такие бинарные соединения, как AgF, KBr, Na 2 S, Ba(HS) 2 , NaCN, NH 4 Cl, и Pb(N 3) 2 , построены, подобно солям, из реальных катионов и анионов, поэтому их называют солеобразными бинарными соединениями (или просто солями). Их можно рассматривать как продукты замещения атомов водорода в соединениях НF, НCl, НBr, Н 2 S, НCN и НN 3 . Последние в водном растворе обладают кислотной функцией, и поэтому их растворы называют кислотами, например НF(aqua) - фтороводородная кислота, Н 2 S(aqua) - сероводородная кислота. Однако они не принадлежат к типу кислотных гидроксидов, а их производные - к солям в рамках классификации неорганических веществ.

Все химические вещества можно подразделить на два типа: чистые вещества и смеси (рис. 4.3).

Чистые вещества имеют постоянный состав и вполне определенные химические и физические свойства. Они всегда гомогенны (однородны) по составу (см. ниже). Чистые вещества в свою очередь подразделяются на простые вещества (свободные элементы) и соединения.

Простое вещество (свободный элемент) - это чистое вещество, которое не поддается разделению на более простые чистые вещества. Элементы принято подразделять на металлы и неметаллы (см. гл. 11).

Соединение-это чистое вещество, состоящее из двух или нескольких элементов, связанных между собой в постоянных и определенных отношениях. Например, соединение диоксид углерода состоит из двух элементов - углерода и кислорода. Диоксид углерода неизменно содержит 27, 37% углерода и 72,73% кислорода по массе. Это утверждение в равной мере относится к образцам диоксида углерода, полученным на Северном полюсе, Южном полюсе, в пустыне Сахара или на Луне. Таким образом, в диоксиде углерода углерод и кислород всегда связаны в постоянном и строго определенном отношении.

Рис. 4.3. Классификация химических веществ.

Смеси - это вещества, состоящие из двух или нескольких чистых веществ. Они имеют произвольный состав. В некоторых случаях смеси состоят из одной фазы и тогда называются гомогенными (однородными). Примером гомогенной смеси являются растворы. В других случаях смеси состоят из двух или нескольких фаз. Тогда они называются гетерогенными (неоднородными). Примером гетерогенных смесей является почва.

Типы частиц. Все химические вещества - простые вещества (элементы), соединения или смеси состоят из частиц одного из трех типов, с которыми мы уже познакомились в предыдущих главах. Этими частицами являются:

атомы (атом состоит из электронов, нейтронов и протонов, см. гл. 1; атом каждого элемента характеризуется определенным числом протонов в его ядре, и это число называется атомным номером соответствующего элемента);

молекулы (молекула состоит из двух или нескольких атомов, связанных между собой в целочисленном отношении);

ионы (ион представляет собой электрически заряженный атом или группу атомов; заряд иона обусловлен присоединением или потерей электронов).

Элементарные химические частицы. Элементарная химическая частица - это любой химически или изотопически индивидуальный атом, молекула, ион, радикал, комплекс и т.п., поддающийся идентификации как отдельная видовая единица. Совокупность одинаковых элементарных химических частиц образует химический вид. Химические названия, формулы и уравнения реакций могут относится в зависимости от контекста либо к элементарным частицам, либо к химическим видам. Введенное выше понятие химическое вещество относится к химическому виду, который может быть получен в достаточном количестве, допускающем обнаружение его химических свойств.

Невозможно себе представить современную жизнь и производство без химических веществ. При близком контакте с ними на организм человека оказывается некоторое влияние. Надо отметить, что есть и такие соединения, которые проявят свое влияние по прошествии некоторого промежутка времени. В статье попробуем разобраться, какие существуют химические факторы, классы опасности вредных веществ, а также, как они влияют на организм человека.

Применение химических веществ человеком

Сейчас известно несколько миллионов химических соединений, и большую часть из них человек использует в различных отраслях. Если рассматривать с точки зрения применения классы опасности химических веществ, перечень может выглядеть так:

  1. Вещества ядовитые, используемые в промышленности. Сюда можно отнести: красители (анилин), среди растворителей это дихлорэтан, например.
  2. В сельскохозяйственной отрасли широко используются пестициды.
  3. Химические соединения, которые используются в быту: средства гигиены, для проведения санитарной обработки.
  4. Ядовитые вещества, имеющие естественное происхождение, например, яды растений и животных.
  5. Вещества отравляющего действия: иприт, фосген и другие.

Различные классы опасности вредных химических веществ способны попадать в организм через органы дыхательной системы, кожу или слизистые оболочки. Вещества могут оказывать свое негативное влияние избирательно, то есть, на определенную систему органов. Например, свинец влияет на репродуктивную систему человека, а оксиды азота могут спровоцировать отек легочной ткани.

Токсическое воздействие химических веществ

Если рассматривать класс опасности химических веществ, ГОСТ выделяет несколько групп. В каждой есть еще свои подразделения.

Выделяют пять классов в зависимости от токсического воздействия и средней величины смертельной дозы.

  1. Первый класс опасности включает соединения, которых требуется совсем мало для поражения организма. Например, при попадании через желудок это количество составляет 50 мг на килограмм веса человека.
  2. 2 класс включает вещества, концентрация которых может быть выше, чтобы спровоцировать токсическое воздействие. Это может быть от 5 до 50 мг на м3, если попадание происходит через кожу или ЖКТ.
  3. В 3 и 4 классы входят соединения, которых требуется больше, чем первых двух классов и обычно составляет это количество до 5000 единиц.
  4. В пятый класс входят вещества, вызывающие глубокое токсическое поражение.

Химические вещества и орган зрения

Если взять во внимание влияние химических веществ на орган зрения, выделяют следующие классы:

  1. Первый класс включает соединения, которые приводят к необратимым изменениям глазного аппарата, а все это заканчивается нарушениями зрения.
  2. Второй класс содержит вещества, вызывающие патологические изменения зрения, но они способны проходить в течение нескольких недель.

Воздействие химических веществ на кожные покровы

Есть еще одна классификация, она выделяет классы химических веществ, оказывающих негативное влияние на кожу. При делении соединений использовали два критерия. Учитывая первый, выделяют три класса:

  • К первой группе относятся вещества, приводящие к видимому некрозу кожи.
  • Ко второму классу относят вещества, которые вызывают обратимые повреждения. Примерно за две недели происходит восстановление кожных покровов.
  • Вещества, относящиеся к третьему классу, вызывают лишь небольшое раздражение кожи, которое обычно проходит за пару дней.

Второй критерий классификации используют в тех случаях, когда недостаточно данных для отнесения веществ к первым трем группам.

Воздействие химических соединений на окружающую среду

Согласно ГОСТу, имеется также классификация, которая учитывает влияние химических соединений на окружающую среду. В этой группе выделяют следующие категории веществ:

  • Губительные для озонового слоя.
  • Оказывающие острое токсическое воздействие на водную среду.
  • Вещества, которые оказывают постепенное отравляющее действие на обитателей водных ресурсов.

Все эти вредные соединения можно еще подразделить на категории по вредности. Для оказания токсического эффекта хватит концентрации 0,1 мг/л.

Классификация химических веществ по классам опасности

В огромном многообразии известных веществ не все являются одинаково опасными для человеческого организма. Выделяют следующие классы:

  1. К первому классу относятся чрезвычайно опасные вещества и соединения. Для летального исхода будет достаточно попадания в желудок 15 мг вещества на килограмм веса человека. Примеры можно привести следующие: цианид калия, ртуть, никотин и другие.
  2. Второй класс включает высокоопасные вещества. Летальная дозировка составляет от 15 до 150 мг на килограмм массы тела, учитывая свойства вещества. Эти соединения оказывают негативное воздействие не только на человека, но и на окружающую природу. Сюда можно отнести: мышьяк, литий, свинец, хлороформ.
  3. Умеренно опасные – это третий класс опасности химических веществ. Для летального исхода достаточно 500-2500 мг/кг. При попадании через желудок летальная доза составляет 150-5000 мг/кг веса. К этому классу относятся: бензин, соединения алюминия и марганца. Так как многие вещества этого класса используются часто в повседневной жизни, то нельзя халатно с ними обращаться.
  4. Малоопасные вещества самые безобидные, так как они отличаются своей низкой токсичностью и опасностью. Эти вещества часто нас окружают, например, аммиак можно найти в каждой аптечке, керосин используют в лампах, этанол применяют в медицине и он содержится в алкогольных напитках.

Неважно, сколько классов опасности химических веществ существует, важно относиться ко всем с особой осторожностью, соблюдать все меры безопасности при работе с ними.

Классификация веществ по воздействию на организм

Все имеющиеся химические вещества и соединения отличаются друг от друга не только степенью токсичности, но и характером воздействия на человека.

В зависимости от принадлежности к классу опасности всем веществам присвоен определенный цвет.

  1. Чрезвычайно опасные вещества обозначают красным цветом.
  2. Высокая степень опасности отмечается оранжевым цветом.
  3. Умеренно опасные имеют желтый цвет.
  4. Вещества, которые относятся к малоопасным, обозначают зеленым цветом.

Классификация веществ с точки зрения токсического воздействия

Совершенно разная токсичность химических веществ, классы опасности в связи с этим выделяют следующие:

  1. Вещества, которые оказывают нервнопаралитическое действие, сюда можно отнести: инсектициды, никотин, зарин.
  2. Соединения, вызывающие воспалительные процессы и некротические изменения в совокупности с общетоксическим воздействием. Примером могут служить: уксусная эссенция, мышьяк, ртуть.
  3. Соединения, вызывающие судороги, кому, отек мозга, то есть, оказывающие общетоксическое воздействие. Сюда можно отнести: синильную кислоту, угарный газ, алкоголь.
  4. Удушающие вещества (фостен, оксиды азота).
  5. Вещества, вызывающие слезоточивость и раздражение слизистых оболочек. В качестве примера можно привести: пары кислот и щелочей.
  6. Вещества и соединения, оказывающие воздействие на психику. Сюда относятся наркотические вещества, атропин и другие.

Если предстоит использовать или контактировать с этими веществами, то необходимо соблюдать особую осторожность.

Международная классификация

Мы рассмотрели, сколько классов опасности химических веществ существует согласно ГОСТу, но есть еще и разделение на основе международных требований. Оно представляет 9 групп, каждая из которых имеет свои правила для транспортировки и хранения.

  1. Вещества, которые легко могут взрываться или загораться.
  2. Ко второму классу относятся вещества, легко воспламеняющиеся, ядовитые, химически неустойчивые.
  3. Химические вещества в жидком состоянии, которые легко воспламеняются, относятся к 3 классу.
  4. К 4 классу относят твердые вещества, способные к самовоспламенению или возгоранию после внешнего воздействия.
  5. Органические окислители относятся к 5 классу, так как они способны выделять кислород, поддерживающий горение.
  6. 6 класс – это токсичные вещества, вызывающие сильное отравление или приводящие к смертельному исходу при вдыхании паров.
  7. Следующий класс – это радиоактивные вещества.
  8. Едкие вещества – это восьмой класс опасности.
  9. К 9 классу отнесли все остальные вещества, которые не попали в предыдущие классы, но в какой-то степени могут быть опасными.

Как защититься от опасных веществ

Важно не только знать класс опасности химических веществ, но и уметь минимально снизить степень влияния на человеческий организм и природу. Для этого можно использовать следующие способы:

  • Располагать ядовитые и вредные вещества на предприятиях как можно дальше от рабочих мест.
  • Иметь современную и эффективную систему вентиляции для удаления опасных веществ.
  • Своевременно использовать индивидуальные средства защиты.
  • Использовать современные методы очистки воды перед тем, как выбрасывать ее в окружающую среду.
  • Разбавлять вредные соединения до допустимых концентраций.

Применение этих доступных методов позволит максимально обезопасить человека и природу от воздействия вредных химических веществ.

Подведем итоги

Если подвести итоги всего сказанного, то можно не только выделить класс опасности химических веществ,но и отметить следующие типы воздействия вредных соединений:

  1. Раздражающее действие, если попадают на кожу, то вызывают покраснения, например, фтор, фосфор и т.д.
  2. Прижигающего действия вещества могут вызывать ожоги разной степени. Сюда можно отнести: аммиак, соляную кислоту.
  3. Удушающие вещества могут привести к асфиксии и смертельному исходу. Таким действием обладают фосген и хлорпикрин.
  4. Вещества с токсическим воздействием могут вызывать отравления различной степени тяжести. К таковым относятся: сероводород, синильная кислота, окись этилена и другие.
  5. Мутагенные вещества способны спровоцировать появление мутаций.
  6. Канцерогенное воздействие приводит к развитию онкологических заболеваний.

Некоторые классификации выделяют еще наркотические вещества, которые, попадая внутрь организма, вызывают привыкание и постепенное отравление организма.

Вот мы и познакомились с многообразием химических веществ, которые практически везде нас окружают. Без химии уже практически невозможно представить себе современную промышленность и производство. Но для того, чтобы в процессе взаимодействия с вредными веществами не причинить вред своему организму, необходимо соблюдать особую осторожность и знать правила хранения и транспортировки.

8.1. Что такое химическая номенклатура

Химическая номенклатура складывалась постепенно, в течение нескольких столетий. По мере накопления химических знаний она неоднократно менялась. Уточняется и развивается она и сейчас, что связано не только с несовершенством некоторых номенклатурных правил, но еще и с тем, что ученые постоянно открывают новые и новые соединения, назвать которые (а бывает, что даже и составить формулы), пользуясь существующими правилами иногда оказывается невозможно. Номенклатурные правила, принятые в настоящее время научным сообществом всего мира, содержатся в многотомном издании: " Номенклатурные правила ИЮПАК по химии" , число томов в котором непрерывно возрастает.
С типами химических формул, а также с некоторыми правилами их составления вы уже знакомы. А какие же бывают названия химических веществ?
Пользуясь номенклатурными правилами, можно составить систематическое название вещества.

Для многих веществ кроме систематических используются и традиционные, так называемые тривиальные названия. При своем возникновении эти названия отражали определенные свойства веществ, способы получения или содержали название того, из чего данное вещество было выделено. Сравните систематические и тривиальные названия веществ, приведенных в таблице 25.

К тривиальным относятся и все названия минералов (природных веществ, составляющих горные породы), например: кварц (SiO 2); каменная соль, или галит (NaCl); цинковая обманка, или сфалерит (ZnS); магнитный железняк, или магнетит (Fe 3 O 4); пиролюзит (MnO 2); плавиковый шпат, или флюорит (CaF 2) и многие другие.

Таблица 25. Систематические и тривиальные названия некоторых веществ

Систематическое название

Тривиальное название

NaCl Хлорид натрия Поваренная соль
Na 2 CO 3 Карбонат натрия Сода, кальцинированная сода
NaHCO 3 Гидрокарбонат натрия Питьевая сода
CaO Оксид кальция Негашеная известь
Ca(OH) 2 Гидроксид кальция Гашеная известь
NaOH Гидроксид натрия Едкий натр, каустическая сода, каустик
KOH Гидроксид калия Едкое кали
K 2 CO 3 Карбонат калия Поташ
CO 2 Диоксид углерода Углекислый газ, углекислота
CO Монооксид углерода Угарный газ
NH 4 NO 3 Нитрат аммония Аммиачная селитра
KNO 3 Нитрат калия Калийная селитра
KClO 3 Хлорат калия Бертолетова соль
MgO Оксид магния Жженая магнезия

Для некоторых наиболее известных или широко распространенных веществ употребляются только тривиальные названия, например: вода, аммиак, метан, алмаз, графит и другие. В этом случае такие тривиальные названия иногда называют специальными .
Как составляются названия веществ, относящихся к разным классам, вы узнаете из следующих параграфов.

Карбонат натрия Na 2 CO 3 . Техническое (тривиальное) название – кальцинированная (то есть прокаленная) сода, или просто " сода" . Белое вещество, термически очень устойчивое (плавится без разложения), хорошо растворяется в воде, частично с ней реагируя, при этом в растворе создается щелочная среда. Карбонат натрия – ионное соединение со сложным анионом, атомы которого связаны между собой ковалентными связями. Сода ранее широко применялась в быту для стирки белья, но сейчас полностью вытеснена современными стиральными порошками. Получают карбонат натрия по довольно сложной технологии из хлорида натрия, а используют, в основном, в производстве стекла. Карбонат калия К 2 СО 3 . Техническое (тривиальное) название – поташ. По строению, свойствам и применению карбонат калия очень похож на карбонат натрия. Ранее его получали из золы растений, да и сама зола использовалась при стирке. Сейчас большая часть карбоната калия получается в качестве побочного продукта при производстве глинозема (Al 2 O 3), используемого для производства алюминия.

Из-за гигроскопичности поташ применяют в качестве осушающего средства. Используют его и в производстве стекла, пигментов, жидкого мыла. Кроме этого, карбонат калия – удобный реактив для получения других соединений калия.

ХИМИЧЕСКАЯ НОМЕНКЛАТУРА, СИСТЕМАТИЧЕСКОЕ НАЗВАНИЕ, ТРИВИАЛЬНОЕ НАЗВАНИЕ, СПЕЦИАЛЬНОЕ НАЗВАНИЕ.
1.Выпишите из предыдущих глав учебника десять тривиальных названий любых соединений (отсутствующих в таблице), запишите формулы этих веществ и дайте их систематические названия.
2.О чем говорят тривиальные названия " поваренная соль" , " кальцинированная сода" , " угарный газ" , " жженая магнезия" ?

8.2. Названия и формулы простых веществ

Названия большинства простых веществ совпадают с названиями соответствующих элементов. Только все аллотропные модификации углерода имеют свои особые названия: алмаз, графит, карбин и другие. Кроме этого имеет свое особое название одна из аллотропных модификаций кислорода – озон.
Простейшая формула простого немолекулярного вещества состоит только из символа соответствующего элемента, например: Na – натрий, Fe – железо, Si – кремний.
Аллотропные модификации обозначают, используя буквенные индексы или буквы греческого алфавита:

C (а) – алмаз; - Sn – серое олово;
С (гр) – графит; - Sn – белое олово.

В молекулярных формулах молекулярных простых веществ индекс, как вы знаете, показывает число атомов в молекуле вещества:
H 2 – водород; O 2 – кислород; Cl 2 – хлор; O 3 – озон.

В соответствии с номенклатурными правилами систематическое название такого вещества должно содержать приставку, показывающую число атомов в молекуле:
H 2 – диводород;
O 3 – трикислород;
P 4 – тетрафосфор;
S 8 – октасера и т. д., но в настоящее время это правило еще не стало общеупотребительным.

Таблица 26.Числовые приставки

Множитель Приставка Множитель Приставка Множитель Приставка
моно пента нона
ди гекса дека
три гепта ундека
тетра окта додека
Озон O 3 – светло-синий газ с характерным запахом, в жидком состоянии – темно-голубой, в твердом – темно-фиолетовый. Это вторая аллотропная модификация кислорода. Озон значительно лучше растворим в воде, чем кислород. О 3 малоустойчив и даже при комнатной температуре медленно превращается в кислород. Очень реакционноспособен, разрушает органические вещества, реагирует со многими металлами, в том числе с золотом и платиной. Почувствовать запах озона можно во время грозы, так как в природе озон образуется в результате воздействия молний и ультрафиолетового излучения на атмосферный кислород.Над Землей существует озоновый слой, расположенный на высоте около 40 км, который задерживает основную часть губительного для всего живого ультрафиолетового излучения Солнца. Озон обладает отбеливающими и дезинфицирующими свойствами. В некоторых странах он используется для дезинфекции воды. В медицинских учреждениях для дезинфекции помещений используют озон, получаемый в специальных приборах – озонаторах.

8.3. Формулы и названия бинарных веществ

В соответствии с общим правилом в формуле бинарного вещества на первое место ставится символ элемента с меньшей электроотрицательностью атомов, а на второе – с большей, например: NaF, BaCl 2 , CO 2 , OF 2 (а не FNa, Cl 2 Ba, O 2 C или F 2 O!).
Так как значения электроотрицательности для атомов разных элементов постоянно уточняются, обычно пользуются двумя практическими правилами:
1. Если бинарное соединения представляет собой соединение элемента, образующего металл, с элементом, образующим неметалл, то на первое место (слева) всегда ставится символ элемента, образующего металл.
2. Если оба элемента, входящие в состав соединения – элементы, образующие неметаллы, то их символы располагают в следующей последовательности:

B, Si, C, Sb, As, P, N, H, Te, Se, S, At, I, Br, Cl, O, F.

Примечание: следует помнить, что место азота в этом практическом ряду не соответствует его электроотрицательности; в соответствии с общим правилом его следовало бы поместить между хлором и кислородом.

Примеры: Al 2 O 3 , FeO, Na 3 P, PbCl 2 , Cr 2 S 3 , UO 2 (по первому правилу);
BF 3 , CCl 4 , As 2 S 3 , NH 3 , SO 3 , I 2 O 5 , OF 2 (по второму правилу).
Систематическое название бинарного соединения может быть дано двумя способами. Например, СО 2 можно назвать диоксидом углерода – это название вам уже известно – и оксидом углерода(IV). Во втором названии в скобках указывается число Штока (степень окисления) углерода. Это делается для того, чтобы отличить это соединение от СО – оксида углерода(II).
Можно использовать и тот, и другой тип названия в зависимости от того, какой в данном случае более удобен.

Примеры (выделены более удобные названия):

MnO монооксид марганца оксид марганца(II)
Mn 2 O 3 триоксид димарганца оксид марганца (III)
MnO 2 диоксид марганца оксид марганца(IV)
Mn 2 O 7 гептаоксид димарганца оксид марганца (VII)

Другие примеры:

Если атомы элемента, стоящего в формуле вещества на первом месте, проявляют только одну положительную степень окисления, то ни числовые приставки, ни обозначение этой степени окисления в названии вещества обычно не используются, например:
Na 2 O – оксид натрия; KCl – хлорид калия;
Cs 2 S – сульфид цезия; BaCl 2 – хлорид бария;
BCl 3 – хлорид бора; HCl – хлорид водорода (хлороводород);
Al 2 O 3 – оксид алюминия; H 2 S – сульфид водорода (сероводород).

1.Составьте систематические названия веществ (для бинарных веществ – двумя способами):
а) O 2 , FeBr 2 , BF 3 , CuO, HI;
б) N 2 , FeCl 2 , Al 2 S 3 , CuI, H 2 Te;
в) I 2 , PCl 5 , MnBr 2 , BeH 2 , Cu 2 O.
2.Назовите двумя способами каждый из оксидов азота: N 2 O, NO, N 2 O 3 , NO 2 , N 2 O 4 , N 2 O 5 . Подчеркните более удобные названия.
3.Запишите формулы следующих веществ:
а) фторид натрия, сульфид бария, гидрид стронция, оксид лития;
б) фторид углерода(IV), сульфид меди(II), оксид фосфора(III), оксид фосфора(V);
в) диоксид кремния, пентаоксид дийода, триоксид дифосфора, дисульфид углерода;
г) селеноводород, бромоводород, йодоводород, теллуроводород;
д) метан, силан, аммиак, фосфин.
4.Сформулируйте правила составления формул бинарных веществ по положению элементов, входящих в состав этого вещества, в системе элементов.

8.4. Формулы и названия более сложных веществ

Как вы уже заметили, в формуле бинарного соединения на первом месте стоит символ катиона или атома с частичным положительным зарядом, а на втором – аниона или атома с частичным отрицательным зарядом. Точно также составляются формулы и более сложных веществ, но места атомов или простых ионов в них занимают группы атомов или сложные ионы.
В качестве примера рассмотрим соединение (NH 4) 2 CO 3 . В нем на первом месте стоит формула сложного катиона (NH 4 ), а на втором – формула сложного аниона (CO 3 2).
В формуле самого сложного иона на первое место ставится символ центрального атома, то есть атома, с которым связаны остальные атомы (или группы атомов) этого иона, а в названии указывается степень окисления центрального атома.

Примеры систематических названий:
Na 2 SO 4 тетраоксосульфат(VI) натрия(I),
K 2 SO 3 триоксосульфат(IV) калия(II),
CaCO 3 триоксокарбонат(IV) кальция(II),
(NH 4) 3 PO 4 тетраоксофосфат(V) аммония,
PH 4 Cl хлорид фосфония,
Mg(OH) 2 гидроксид магния(II).

Такие названия точно отражают состав соединения, но очень громоздки. Поэтому вместо них обычно используют сокращенные (полусистематические ) названия этих соединений:
Na 2 SO 4 сульфат натрия,
K 2 SO 3 сульфит калия,
CaCO 3 карбонат кальция,
(NH 4) 3 PO 4 фосфат аммония,
Mg(OH) 2 гидроксид магния.

Систематические названия кислот составляется так, как будто кислота – соль водорода:
H 2 SO 4 тетраоксосульфат(VI) водорода,
H 2 CO 3 триоксокарбонат(IV) водорода,
H 2 гексафторосиликат(IV) водорода.(О причинах применения квадратных скобок в формуле этого соединения вы узнаете позже)
Но для наиболее известных кислот номенклатурные правила допускают применение их тривиальных названий, которые вместе с названиями соответствующих анионов приведены в таблице 27.

Таблица 27. Названия некоторых кислот и их анионов

Название

Формула

Хлорид алюминия AlCl 3 . В твердом состоянии – немолекулярное вещество с простейшей формулой AlCl 3 , а в жидком и газообразном – молекулярное вещество Al 2 Cl 6 . Связи в безводном хлориде алюминия ковалентные, в твердом виде он имеет каркасное строение. Это белое легкоплавкое сильно летучее соединение. Хлорид алюминия в воде хорошо растворим, " дымит" во влажном воздухе. Из водных растворов безводный AlCl 3 выделен быть не может. Используется хлорид алюминия как катализатор при синтезе органических веществ.

Азотная кислота HNO 3 Чистая безводная азотная кислота – бесцветная жидкость, на свету она разлагается с образованием бурого диоксида азота, который окрашивает кислоту в желтоватый цвет, интенсивность которого зависит от концентрации диоксида. При неосторожном обращении с кислотой и ее попадании на кожу образуется ожог, также имеющий характерный желтый цвет. С водой азотная кислота смешивается в любых отношениях. Принято различать концентрированную, разбавленную и очень разбавленную кислоты. Смесь азотной и соляной кислот называется " царской водкой" – эта смесь так активна, что способна реагировать с золотом. Да и сама по себе азотная кислота – один из самых разрушительных реагентов. В связи с ее высокой активностью, азотная кислота не встречается в природе в свободном состоянии, хотя небольшие ее количества образуются в атмосфере. Получают азотную кислоту в больших количествах из аммиака по довольно сложной технологии, а расходуют на производство минеральных удобрений. кроме того, это вещество используется практически во всех отраслях химической промышленности.

ПОЛУСИСТЕМАТИЧЕСКИЕ НАЗВАНИЯ КИСЛОТ И СОЛЕЙ.
Назовите следующие вещества:
а) Fe(NO 3) 3 , H 2 SeO 4 , Cr(OH) 3 , (NH 4) 3 PO 4 ;
б) Cr 2 (SO 4) 3 , CrSO 4 , CrCl 3 , CrO 3 , Cr 2 S 3 ;
в) Na 2 SO 4 , Na 2 SO 3 , Na 2 S;
г) KNO 3 , KNO 2 , K 3 N;
д) HBr, H 3 BO 3 , (H 3 O) 2 SO 4 , (H 3 O) 3 PO 4 ;
е) KMnO 4 , K 2 S 2 O 7 , K 3 , K 3 .
2.Составьте формулы следующих веществ:
а) карбонат магния, нитрат свинца(II), нитрит лития;
б) гидроксид хрома(III), бромид алюминия, сульфид железа(II);
в) нитрат серебра, бромид фосфора(V), фосфат кальция.

Сокращения:

Т кип. — температура кипения,

Т пл. — температура плавления.

Адипиновая кислота (СН 2) 4 (СООН) 2 — бесцветные кристаллы, растворимые в воде . Т. пл. 153 °С. Образует соли — адипинаты. Применяется для удаления накипи.

Азотная кислота HNO 3 — бесцветная жидкость с резким запа-хом, неограниченно растворимая в воде. Т. кип. 82,6 °С. Сильная кислота , вызывает глубокие ожоги и требует осторожности в обра-щении. Образует соли — нитраты.

Алюмокалиевые квасцы KAl(SO 4) 2 .12Н 2 О — двойная соль, бес-цветное кристаллическое вещество, хорошо растворимое в воде. Т пл. 92 °С.

Амилацетат СН 3 СООС 5 Н 11 (амиловый эфир уксусной кисло-ты) — бесцветная жидкость с фруктовым запахом, органический растворитель и отдушка.

Аминокислоты — органические вещества, в молекулах которых имеются карбоксильные группы СООН и аминогруппы NH 2 . Вхо-дят в состав белков.

Аммиак NH — бесцветный газ с резким запахом, хорошо раство-рим в воде, образует гидрат аммиака NH 3 .Н 2 О.

Аммиачная (аммонийная) селитра , см. . Анилин (аминобензол, фениламин) C 6 H 5 NH 2 — вязкая бесцвет-ная жидкость, темнеющая на свету и на воздухе. Нерастворим в воде, растворяется в этиловом спирте и диэтиловом эфире. Т кип. 184 °С. Ядовит.

Арахидоновая кислота С 19 Н 31 СООН — ненасыщенная карбоновая кислота с четырьмя двойными связями в молекуле, бесцветная жидкость. Т кип. 160—165 °С. Входит в состав расти-тельных жиров.

Аскорбиновая кислота (витамин С) , органическое вещество сложного строения — бесцветные кристаллы, чувствительные к нагреванию. Участвует в окислительно-восстановительных процес-сах живого организма.

Белки — биополимеры, состоящие из остатков аминокислот. Иг-рают важнейшую роль в процессах жизнедеятельности.

Бензин — смесь лёгких углеводородов; получается при нефтепе-реработке. Т кип. от 30 до 200 °С. Горючее и органический растворитель.

Бензойная кислота С 6 Н 5 СООН — бесцветное кристаллическое вещество, плохо растворимое в воде. Выше 100 °С разлагается.

Бензол С 6 Н 6 — ароматический углеводород. Т кип. 80 °С. Горюч, ядовит.

Бетаин (триметилглицин) (CH 3) 3 N + CH 2 COO — органическое вещество, хорошо растворимое в воде, содержится в растениях (например, в свёкле).

Борная кислота В(ОН) 3 — бесцветное кристаллическое вещество, малорастворимое в воде, слабая кислота.

Бромат натрия NaBrO 3 — бесцветные кристаллы, растворимые в воде. Плавится при 384 °С с разложением. В кислой среде — сильный окислитель.

Воск — жироподобное аморфное вещество растительного проис-хождения, смесь сложных эфиров жирных кислот. Плавится в интервале 40—90 °С.

Галактоза С 6 Н 12 О 6 .Н 2 О — углевод, моносахарид, бесцветное кристаллическое вещество, растворимое в воде.

Гипохлорит натрия (тригидрат) NaClO .ЗН 2 О — зеленовато-жёлтое кристаллическое вещество, хорошо растворимое в воде. Т. пл. 26 °С, выше 40 °С разлагается, в присутствии органических веществ взрывается. Отбеливатель.

Глицерин СН(ОН)(СН 2 ОН) 2 — бесцветная вязкая жидкость, не-ограниченно растворимая в воде и поглощающая влагу из воздуха, трёхатомный спирт. Входит в состав жиров в виде липидов — триг-лицеридов (эфиров глицерина с органическими кислотами).

Глюкоза (виноградный сахар) C 6 H 12 O 6 — углевод, моносахарид, бесцветное кристаллическое вещество, хорошо растворимое в воде. Т пл. 146 °С. Содержится в соке всех растений и в крови человека и животных.

Глюконат кальция Са[СН 2 ОН(СНОН) 4 СОО] 2 .Н 2 О (моногид-рат) — белый кристаллический порошок, малорастворимый в хо-лодной воде, практически нерастворимый в этиловом спирте.

Глюконовая (сахарная) кислота СН 2 (ОН)(СНОН) 4 СООН — бес-цветное кристаллическое вещество, растворимое в воде, получается при окислении глюкозы. Образует соли — глюконаты.

Двойной суперфосфат (моногидрат дигидроортофосфата кальция) Са(Н 2 РО 4) 2 .Н 2 О — белый порошок, растворимый в воде.

Дибутилфталат С 6 Н 4 (СООС 4 Н 9) 2 (бутиловый эфир фталевой кислоты) — бесцветная жидкость с фруктовым запахом, малораcтворимая в воде. Органический растворитель и репеллент.

Дигидроортофосфат аммония NH 4 H 2 PO 4 — бесцветное крис-таллическое вещество, растворимое в воде. Удобрение (диаммо-фос).

Диметцлфталат С 6 Н 4 (СООСН 3) 2 (метиловый эфир фталевой кислоты) — бесцветная летучая жидкость. Органический растворитель и репеллент.

Железный купорос (гептагидрат сульфата железа) F е S О 4 .7Н 2 О — зеленоватые кристаллы, растворимые в воде. На воздухе постепен-но окисляется.

Железный сурик — оксид железа(III) Fe 2 O 3 с примесями. Мине-ральная краска красно-коричневого цвета.

Жёлтая кровяная соль (тригидрат гексацианоферрата (II) ка-лия) K 4 [ Fe (CN) 6 ].ЗН 2 О — светло-жёлтые кристаллы, раство-римые в воде. В XVIII в. получалась из отходов скотобоен, отку-да и название.

Жирные кислоты — карбоновые кислоты, содержащие 13 и боль-ше атомов углерода.

Кальцинированная сода , см. .

Камфора С 10 Н 16 О — бесцветные кристаллы с характерным запа-хом. Т пл. 179 °С, легко возгоняется при нагревании. Растворяется в органических растворителях, в воде малорастворима.

Канифоль — стеклообразное вещество жёлтого цвета. Т пл. 100— 140 °С, состоит из смоляных кислот — органических веществ цикли-ческого строения. Растворима в органических растворителях и ук-сусной кислоте, нерастворима в воде.

Карбонат аммония (NH 4) 2 CO 3 — бесцветное кристаллическое вещество, хорошо растворимое в воде, при нагревании разлагается.

Керосин — смесь углеводородов, получается при нефтепере-работке. Т кип. 150—300 °С. Топливо и органический раство-ритель.

Красная кровяная соль K 3 [ Fe (CN) 6 ] (гексацианоферрат (Ш) калия) — красные кристаллы, растворимые в воде. В XVIII в. получалась из отходов скотобоен, откуда и название.

Крахмал [С 6 Н 10 О 5 ] n — белый аморфный порошок, полисахарид. При длительном контакте с водой разбухает, превращается в клейстер, при нагревании образует декстрин. Содержится в картофеле, муке, крупах.

Лакмус — природное органическое вещество, кислотно-основный индикатор (синий в щелочной, красный в кислой среде).

Масляная кислота С 3 Н 7 СООН — бесцветная жидкость с непри-ятным запахом. Т кип. 163 °С.

Меркаптаны (тиоспирты) — органические соединения, содер-жащие группу SH , например, метилмеркаптан CH 3 SH . Обладают отвратительным запахом.

Метагидроксид железа FeO(OH) — буро-коричневый порошок, нерастворимый в воде, основа ржавчины.

Метасиликат натрия (нонагидрат) Na 2 SiO 3 .9Н 2 О — бесцветное вещество, хорошо растворимое в воде. Т пл. 47 °С, выше 100 °С теряет воду. Водные растворы (силикатный клей, растворимое стекло) имеют сильнощелочную реакцию из-за гидролиза.

Монооксид углерода (угарный газ) СО — газ без цвета и запаха, силь-ный яд. Образуется при неполном сгорании органических веществ.

Муравьиная кислота НСООН — бесцветная жидкость с резким за-пахом, неограниченно растворимая в воде, одна из самых сильных органических кислот. Т кип. 100,7 °С. Содержится в выделениях насекомых, в крапиве, хвое. Образует соли — формиаты.

Нафталин С 10 Н 8 — бесцветное кристаллическое вещество с рез-ким характерным запахом, нерастворимое в воде. Возгоняется при 50 °С. Ядовит.

Нашатырный спирт — 5-10%-й водный раствор аммиака.

Ненасыщенные (непредельные) жирные кислоты — жирные кислоты, в молекулах которых есть одна или несколько двойных связей.

Полисахариды — углеводы сложного строения (крахмал, целлюлоза и др.).

Пропан С 3 Н 8 — бесцветный горючий газ, углеводород.

Пропионовая кислота С 2 Н 5 СООН — бесцветная жидкость, рас-творимая в воде. Т кип. 141 °С. Слабая кислота, образует соли — пропионаты.

Простой суперфосфат — смесь растворимого в воде дигидроор-тофосфата кальция Са(Н 2 РО 4) 2 .Н 2 О и нерастворимого сульфата кальция CaSO 4.

Резорцин С 6 Н 4 (ОН) 2 — бесцветные кристаллы с характерным запахом, растворимые, в воде и этиловом спирте. Т пл. 109 — 110 °С

Салициловая кислота НОС 6 Н 4 СООН — бесцветное кристалличе-ское вещество, малорастворимое в холодной воде, хорошо растворимое в этиловом спирте. Т пл. 160 °С.

Сахароза С 12 Н 22 О 11 — бесцветное кристаллическое вещество, хо-рошо растворимое в воде. Т пл. 185 °С.

Свинцовый сурик Рb 3 О 4 — мелкокристаллическое вещество крас-ного цвета, нерастворимое в воде. Сильный окислитель. Пигмент. Ядовит.

Сера S 8 — кристаллическое вещество жёлтого цвета, нераствори-мое в воде. Т пл. 119,3 °С.

Серная кислота H 2 SO 4 — бесцветная маслообразная жидкость без запаха, неограниченно растворимая в воде (с сильным разогревани-ем). Т кип. 338 °С. Сильная кислота, едкое вещество, образует соли — сульфаты и гидросульфаты.

Серный цвет — тонко измельчённый порошок серы.

Сероводород H 2 S — бесцветный газ с запахом тухлых яиц, раство-римый в воде, образуется при разложении белков. Сильный восста-новитель. Ядовит.

Силикагель (полигидрат диоксида кремния) n SiO 2 · m H 2 O — бес-цветные гранулы, нерастворимые в воде. Хороший адсорбент (поглотитель) влаги.

Тетрахлорид углерода (четырёххлористый углерод) ССl 4 — бес-цветная жидкость, нерастворимая в воде. Т кип. 77 °С. Растворитель. Ядовит.

Тетраэтилсвинец Рb(С 2 Н 5) 4 — бесцветная горючая жидкость. Добавка к автомобильному топливу (в количестве до 0,08%). Ядовит.

Триполифосфат натрия Na 3 P 3 O 9 — бесцветное твёрдое вещество, неограниченно растворимое в воде, водные растворы имеют щелочную среду из-за гидролиза.

Углеводороды — органические соединения состава C x H y (напри-мер, пропан С 3 Н 8 , бензол С 6 Н 6).

Угольная кислота Н 2 СО 3 — слабая кислота, существует только в водном растворе, образует соли — карбонаты и гидрокарбонаты.

Уксусная кислота СН 3 СООН — бесцветная жидкость. Кристаллизуется при 17°С. Неограниченно растворима в воде и эти-ловом спирте. «Ледяная» уксусная кислота содержит 99,8% СН 3 СООН.

Уксусный альдегид , см. .

Фруктоза (фруктовый сахар) С 6 Н 12 О 6 .Н 2 О — моносахарид, бес-цветное кристаллическое вещество, растворимое в воде. Т пл. около 100 °С. Слаще сахарозы в полтора раза, содержится в плодах, нектаре цветов, мёде.

Фтороводород HF — бесцветный газ с удушливым запахом, хо-рошо растворим в воде с образованием фтороводородной (плавиковой) кислоты.

Цитраты — соли лимонной кислоты.

Щавелевая кислота (дигидрат) Н 2 С 2 О 4 .2H 2 O — бесцветное кри-сталлическое вещество, растворимое в воде. Возгоняется при 125 °С. Содержится в щавеле, шпинате, кислице в виде калиевой соли.

Этилацетат (уксусноэтиловый эфир) СН 3 СООС 2 Н 5 — бесцвет-ная жидкость с фруктовым запахом, малорастворимая в воде. Т кип. 77 °С.

Этиленгликоль С 2 Н 4 (ОН) 2 — бесцветная вязкая жидкость, неограни-ченно растворимая в воде. Т пл. 12,3 °С, Т кип. 197,8 °С. Ядовит.

Этиловый спирт (этанол, винный спирт) С 2 Н 5 ОН — бесцветная жидкость, неограниченно растворяется в воде. Т кип. 78 °С. Применяется как растворитель и консервант. В больших дозах — силь-ный яд.

Эфиры — органические вещества, включающие фрагменты спир-тов либо спиртов и кислот, соединённые через атом кислорода.

Яблочная (оксиянтарная) кислота СН(ОН)СН 2 (СООН) 2 — бес-цветное кристаллическое вещество, растворимое в воде. Т пл. 100 °С.

Янтарная кислота (СН 2) 2 (СООН) 2 — бесцветное кристалличе-ское вещество, растворимое в воде. Т пл. 183 °С. Образует соли — сукцинаты.

Понравилась статья? Поделитесь ей