Контакты

Кристаллы их свойства. Типы кристаллов и их свойства

Кристаллы - твердые тела, имеющие многогранную форму, а слагающие их частицы (атомы, молекулы, ионы) расположены закономерно. Поверхность кристаллов ограничена плоскостями, которые носят название граней. Места соединения граней называются рёбрами, точки пересечения которых называются вершинами или углами.

Грани, рёбра и вершины кристаллов связаны зависимостью: число граней + число вершин = число рёбер + 2. В большинстве случаев кристаллические вещества не имеют ясно огранённой формы, хотя и обладают закономерным внутренним кристаллическим строением.

Установлено, что кристаллы построены из материальных частиц - ионов, атомов или молекул, геометрически правильно расположенных в пространстве.

Основные свойства кристаллических веществ следующие:

1. Анизотропность (т.е. неравносвойственность).

Анизотропными называются такие вещества, которые имеют одинаковые свойства в параллельных направлениях, и неодинаковые - в непараллельных.

Различные физические свойства кристаллов, такие, как теплопроводность, твердость, упругость, распространение света и др., изменяются с изменением направления. В противоположность анизотропным, изотропные тела имеют одинаковые свойства во всех направлениях.

2. Способность самоограняться.

Этой специфической особенностью обладают только кристаллические вещества. При свободном росте кристаллы ограничиваются плоскими гранями и прямыми рёбрами, принимая многогранную форму.

3. Симметрия.

Симметрией называется закономерная повторяемость в расположении предметов или их частей на плоскости или в пространстве. Все кристаллы являются телами симметричными.

Структура кристалла, т.е. расположение в нём отдельных частиц, является симметричной. Следовательно, и сам кристалл будет обладать плоскостями и осями симметрии.

Материальные частицы (атомы, ионы, молекулы) в кристаллическом веществе размещаются не хаотично, а в определённом строгом порядке. Они расположены параллельными рядами, причём расстояния между материальными частицами этих рядов одинаковы. Эта закономерность в строении кристаллов выражается геометрически в виде пространственной решётки, являющейся как бы скелетом вещества.

Представить пространственную решётку можно как бесконечно большое число одинаковых по форме и размеру параллелепипедов, сдвинутых относительно другого и сложенных так, что они выполняют пространство без промежутков.

Вершины параллелепипедов, в которых находятся атомы, ионы или молекулы, называются узлами пространственной решётки, а прямые линии, проведённые через них, - рядами. Любая плоскость, которая проходит через три узла пространственной решётки (не лежащих на одной прямой), называется плоской сеткой. Элементарный параллелепипед, в вершинах которого находятся узлы решётки, носит название ячейки данной пространственной решётки.

Таким образом, кристаллическое вещество имеет строго закономерное (ретикулярное) строение. На приведенном ниже рисунке можно увидеть кристаллические решетки: а) - Алмаза, б) - графита.

Все важнейшие свойства кристаллических веществ являются следствием их внутреннего закономерного строения. Так, например, анизотропность кристаллов можно легко уяснить, если вести измерение каких-либо свойств в различных направлениях. Особенно чётко анизотропия выявляется в оптических свойствах кристаллов, на чём основан один из важнейших методов их изучения, применяемый в минералогии и петрографии.

Способность кристаллов самоограняться также является естественным следствием их внутреннего строения. Грани кристаллов соответствуют плоским сеткам, рёбра - рядам, а вершины углов - узлам пространственной решётки.

Пространственная решётка имеет бесконечное множество плоских сеток, рядов и узлов. Но реальным граням могут соответствовать лишь те плоские сетки решётки, которые имеют наибольшую ретикулярную плотность, т.е. на которых на единицу площади будет приходиться наибольшее число составляющих её частиц (атомов, ионов). Таких плоских сеток сравнительно немного, отсюда и кристаллы имеют вполне определённое число граней.


Осетровский филиал ФГОУ ВПО «НГАВТ»

РЕФЕРАТ

На тему: Кристаллы и их свойства

Выполнила:
Курсант 12 – Бух
Токарева Наталья

Проверила:
Гомзякова Г.Г.

2010 Год

    Введение
    Строение кристаллов
    Процесс роста кристаллов
    Кристаллы в природе
    Получение и применение кристаллов
    Литература
    Введение
Кристаллические тела являются одой из разновидностей минералов.
Кристаллическими называют твердые тела, физические свойства которых не одинаковы в различных направлениях, но совпадают в параллельных направлениях.
Семейство кристаллических тел состоит из двух групп - монокристаллов и поликристаллов. Первые иногда обладают геометрически правильной внешней формой, а вторые, подобно аморфным телам, не имеют присущей данному веществу определенной формы. Но в отличие от аморфных тел структура поликристаллов неоднородна, зерниста. Они представляют собой совокупность сросшихся друг с другом хаотически ориентированных маленьких кристаллов - кристаллитов.
По размерам кристаллы бывают различными. Многие из них можно увидеть только в микроскоп. Но встречаются гигантские кристаллы массой в несколько тонн.
    Строение кристаллов
Разнообразие кристаллов по форме очень велико. Кристаллы могут иметь от четырех до нескольких сотен граней. Но при этом они обладают замечательным свойством - какими бы ни были размеры, форма и число граней одного и того же кристалла, все плоские грани пересекаются друг с другом под определенными углами. Углы между соответственными гранями всегда одинаковы. Кристаллы каменной соли, например, могут иметь форму куба, параллелепипеда, призмы или тела более сложной формы, но всегда их грани пересекаются под прямыми углами.
Грани кварца имеют форму неправильных шестиугольников, но углы между гранями всегда одни и те же - 120°.
Измерение углов между гранями кристаллов имеет очень большое практическое значение, так как по результатам этих измерений во многих случаях может быть достоверно определена природа минерала. Простейшим прибором для измерения углов кристаллов является прикладной гониометр. Применение прикладного гониометра возможно только для исследования крупных кристаллов, невелика и точность измерений, выполненных с его помощью. Различить, например, кристаллы кальцита и селитры, сход по форме и имеющие углы между соответственными гранями, равные 101°55" первого и 102°41,5" у второго, с помощью прикладного гониометра очень трудно. Поэтому в лабораторных условиях измерений углов между гранями кристалла обычно выполняют с помощью более сложных и точных приборов.
Кристаллы правильной геометрической формы встречаются в природе редко.
Совместное действие таких неблагоприятных факторов, как колебания температуры, тесное окружение соседними твердыми телами, не позволяют растущему кристаллу приобрести характерную для него форму. Кроме того, значительная часть кристаллов, имевших в далеком прошлом совершенную огранку, успела утратить ее под действием воды, ветра, трения о другие твердые тела. Так, многие округлые прозрачные зерна, которые можно найти в прибрежном песке, являются кристаллами кварца, лишившимися граней в результате длительного трения друг о друга.
Существует несколько способов, позволяющих узнать, является ли твердое тело кристаллом.
Самый простой из них, но очень малопригодный для использования, был открыт в результате случайного наблюдения в конце XVIII в. Французский ученый Ренне Гаюи нечаянно уронил один из кристаллов своей коллекции.
Рассмотрев осколки кристалла, он заметил, что многие из них представляют собой уменьшенные копии исходного образца.
Замечательное свойство многих кристаллов давать при дроблении осколки, подобные по форме исходному кристаллу, позволило Гаюи высказать гипотезу, что все кристаллы состоят из плотно уложенных рядами маленьких, невидимых в микроскоп, частиц, имеющих присущую данному веществу правильную геометрическую форму. Многообразие геометрических форм Гаюи объяснил не только различной формой «кирпичиков», из которых они состоят, но и различными способами их укладки.
Гипотеза Гаюи правильно отразила сущность явления - упорядоченное и плотное расположение структурных элементов кристаллов, но она не ответила на целый ряд важнейших вопросов.
Еще в XVIII в. английский ученый Роберт Гук и голландский ученый Христиан Гюйгенс обратили внимание на возможность построения правильных многогранников из плотно укладываемых шаров. Они предположили, что кристаллы построены из шарообразных частиц - атомов или молекул. Внешние формы кристаллов согласно этой гипотезе являются следствием особенностей плотной упаковки атомов или молекул. Независимо от них к такому же выводу пришел в 1748 г. Великий русский ученый М. В. Ломоносов. При плотнейшей укладке шаров в один плоский слой каждый шар оказывается окруженным шестью другими шарами, центры которых образуют правильный шестиугольник. Если укладку второго слоя вести по лункам между шарами первого слоя, то второй слой окажется таким же, как и первый, только смещенным относительно него в пространстве.
Укладка третьего слоя шаров может быть осуществлена двумя способами
В первом способе шары третьего слоя укладываются в лунки, находящиеся точно над шарами первого слоя, и третий слой оказывается точной копией первого. При последующем повторении укладки слоев этим способом получается структура, называемая гексагональной плотноупакованной структурой. Во втором способе шары третьего слоя укладываются в лунки, не находящиеся точно над шарами первого слоя. При этом способе упаковки получается структура, называемая кубической плотноупакованной структурой. Обе упаковки дают степень заполнения объема 74%. Никакой другой способ расположения шаров в пространстве при отсутствии их деформации большей степени заполнения объема не дает.
При укладке шаров ряд за рядом способом гексагональной плотной упаковки можно получить правильную шестигранную призму, второй способ упаковки ведет к возможности построения куба из шаров. Если при построении кристаллов из атомов или молекул действует принцип плотной упаковки, то, казалось бы, в природе должны встречаться кристаллы только в виде шестигранных призм и кубов. Кристаллы такой формы действительно очень распространены. Гексагональный плотной упаковке атомов соответствует, например, форма кристаллов цинка, магния, кадмия. Кубической плотной упаковке соответствует форма кристаллов меди, алюминия, серебра, золота и ряда других металлов.
Но этими двумя формами многообразие мира кристаллов вовсе не ограничивается. Существование форм кристаллов, не соответствующих принципу плотнейшей упаковки равновеликих шаров, может иметь разные причины.
Во-первых, кристалл может быть построен с соблюдением принципа плотной упаковки, но из атомов разных размеров или из молекул, имеющих форму, сильно отличающуюся от шарообразной. Атомы кислорода и водорода имеют шарообразную форму. При соединении одного атома кислорода и двух атомов водорода происходит взаимное проникновение их электронных оболочек. Поэтому молекула воды имеет форму, значительно отличающуюся от шарообразной. При затвердевании воды плотная упаковка ее молекул не может осуществляться тем же способом, что и упаковка равновеликих шаров.
Во - вторых, отличие упаковки атомов или молекул от плотнейшей может быть объяснено существованием более сильных связей между ними по определенным направлениям. В случае атомных кристаллов направленность связей определяется структурой внешних электронных оболочек атомов, в молекулярных кристаллах - строением молекул.
Разобраться в устройстве кристаллов, пользуясь только объемными моделями их строения, довольно трудно. В связи с этим часто применяется способ изображения строения кристаллов с помощью пространственной кристаллической решетки. Она представляет собой пространственную сетку, узлы которой совпадают с положением центров атомов (молекул) в кристалле. Такие модели просматриваются насквозь, но по ним нельзя ничего узнать о форме и размерах частиц, слагающих кристаллы.
В основе кристаллической решетки лежит элементарная ячейка - фигура наименьшего размера, последовательным переносом которой можно построить весь кристалл. Для однозначной характеристики ячейки нужно задать размеры ее ребер а, в и с и величину углов a, b и g между ними. Длину одного из ребер называют постоянной кристаллической решетки, а всю совокупность шести величин, задающих ячейку, - параметрами ячейки.
Классификация кристаллов и объяснение их физических свойств оказываются возможными только на основе изучения их симметрии. Учение о симметрии является основой всей кристаллографии.
Для количественной оценки степени симметричности служат элементы симметрии - оси, плоскости и центр симметрии. Осью симметрии называют воображаемую прямую, при повороте вокруг которой на 360° кристалл (или его решетка) несколько раз совмещается сам с собой. Число этих совмещений называют порядком оси.
Плоскостью симметрии называют плоскость, рассекающую кристалл на две части, каждая из которых является зеркальным отображением одна другой.
Число плоскостей симметрии может быть различным. Например, в кубе их девять, а в снежинках любой формы - шесть.
Центром симметрии называют точку внутри кристалла, в которой пересекаются все оси симметрии.
Каждый кристалл характеризуется определенным сочетанием элементов симметрии.
Ввиду того, что число элементов симметрии невелико, задача отыскания всех возможных форм кристаллов не является безнадежной. Выдающийся русский кристаллограф Евграф Степанович Федоров установил, что в природе может существовать только 230 различных кристаллических решеток, обладающих осями симметрии второго, третьего, четвертого и шестого порядка. Иначе говоря, кристаллы могут иметь форму различных призм и пирамид, в основании которых могут лежать только правильный треугольник, квадрат, параллелограмм и шестиугольник.
Е. С. Федоров является основоположником кристаллохимии - науки, занимающейся определением химического состава кристаллов путем исследования формы граней и измерения углов между ними. Кристаллохимический анализ по сравнению с химическим обычно занимает меньше времени и не приводит к разрушению образца.
Многие современники Федорова не только не верили в существование кристаллических решеток, но даже сомневались в существовании атомов. Первые экспериментальные доказательства справедливости выводов Федорова были получены в 1912 г. немецким физиком Э. Лауэ. Разработанный им метод определения атомной или молекулярной структуры тел с помощью рентгеновских лучей носит название рентгеноструктурного анализа. Результаты исследования структуры кристаллов с помощью рентгеноструктурного анализа доказали реальность существования всех рассчитанных Е. С. Федоровым кристаллических решеток.
    Процесс роста кристаллов
Никто не видел, как образуется зародыш кристалла в растворе или расплаве.
Можно высказать предположение, что беспорядочно движущиеся атомы или молекулы случайно могут расположиться в таком порядке, какой соответствует кристаллической решетке. Если раствор не насыщен или температура расплава выше температуры кристаллизации, то зародыши образуются и тут же растворяются или разрушаются тепловым движением. В перенасыщенном растворе или в расплаве, охлажденном до температуры ниже температуры кристаллизации, скорость роста зародыша превышает скорость его разрушения. Такое, казалось бы разумное предположение не согласуется с результатами практики. Как показывают расчеты, зародыш будет устойчив и сможет расти, если число молекул на его поверхности много меньше числа внутренних молекул.
Теоретическая оценка ребра такого зародыша дает величину около 1*10-8 м, т. е. равную нескольким десяткам межатомных расстояний. В объеме этого минимального устойчивого зародыша содержится несколько тысяч атомов. Ясно, что вероятность столкновения такого большого числа атомов ничтожно мала. Однако допустим, что зародыш каким-то образом все же образовался, и выясним, какие условия необходимы для того, чтобы он не растворился, а начал расти. При образовании зародыша выделилось тепло. Атомы, образовавшие кристаллическую решетку зародыша, передали часть своей энергии соседним атомам расплава, которые начали двигаться быстрее. Атомы ближайшего окружения зародыша до тех пор не смогут «осесть» на нем, пока не передадут избыточную энергию более отдаленным атомам. Таким образом, рост зародыша будет происходить в том случае, если обеспечить постоянный отвод тепла из расплава. Раньше считали, что рост кристаллов происходит слой за слоем. Сначала завершается построение одного слоя, потом начинается укладка следующего и т. д. В результате грани, наращиваясь слой за слоем, перемещаются параллельно самим себе в направлении, перпендикулярном плоскости грани, как при кладке кирпичной стены. О справедливости такого предположения, казалось бы, говорят факты существования плоских граней у кристаллов.
Ясно, что осаждение нового атома наиболее вероятно в точке А поверхности, где он будет удерживаться тремя соседями, тогда как в любой другой точке поверхности грани он будет удерживаться меньшим числом соседей. Когда закончится застройка четвертого ряда, начнется застройка пятого и т. д., пока не завершится вся плоскость.
и т.д.................

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Общие свойства кристаллов

Введение

Кристаллы - это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц.

В основе физики твердого тела лежит представление о кристалличности вещества. Все теории физических свойств кристаллических твердых тел основываются на представлении о совершенной периодичности кристаллических решеток. Используя это представление и вытекающие из него положения о симметрии и анизотропии кристаллов, физики разработали теорию электронной структуры твердых тел. Эта теория позволяет дать строгую классификацию твердых тел, определяя их тип и макроскопические свойства. Однако она позволяет классифицировать только известные, исследованные вещества и не позволяет предопределить состав и структуру новых сложных веществ, которые обладали бы заданным комплексом свойств. Эта последняя задача является особо важной для практики, так как ее решение позволило бы создавать материалы по заказу для каждого конкретного случая. При соответствующих внешних условиях свойства кристаллических веществ определяются их химическим составом и типом кристаллической решетки. Изучение зависимости свойств вещества от его химического состава и кристаллической структуры обычно разбивается на следующие отдельные этапы 1) общее изучение кристаллов и кристаллического состояния вещества 2) построение теории химических связей и ее применение к изучению различных классов кристаллических веществ 3) изучение общих закономерностей изменения структуры кристаллических веществ при изменении их химического состава 4) установление правил, позволяющих предопределять химический состав и структуру веществ, обладающих определенным комплексом физических свойств.

Основные свойства кристаллов - анизотропность, однородность, способность к самоогоранению и наличие постоянной температуры плавления.

1. Анизотропность

кристалл анизотропность самоогоранение

Анизотропность - выражается она в том, что физические свойства кристаллов неодинаковы по разным направлениям. К физическим величинам можно отнести такие параметры - прочность, твердость, теплопроводность, скорость распространения света, электропроводность. Характерным примером вещества с ярко выраженной анизотропностью является слюда. Кристаллические пластинки слюды - легко расщепляются лишь по плоскостям. В поперечных же направлениях расщепить пластинки этого минерала значительно труднее.

Примером анизотропности-является кристалл минерала дистена. В продольном направлении, у дистена твердость равняется 4,5, в поперечном - 6. Минерал дистен (Al 2 O), отличающийся резко различной твердостью по неодинаковым направлениям. Вдоль удлинения кристаллы дистена легко царапаются лезвием ножа, в направлении перпендикулярном удлинению, нож не оставляет никаких следов.

Рис. 1 Кристалл дистена

Минерал кордиерит (Mg 2 Al 3 ). Минерал, алюмосиликат магния и железа. Кристалл кордиерита по трем различным направлениям представляется различно окрашенным. Если из такого кристалла вырезать куб с гранями, то можно заметить следующее. Перпендикулярными этим направлениям, то по диагонали куба (от вершины к вершине наблюдается серовато-синяя окраска, в направлении вертикальном - индигово-синяя окраска, и в направлении поперек куба - желтая.

Рис. 2 Куб, вырезанный из кордиерита.

Кристалл поваренной соли, которая имеет форму куба. Из такого кристалла можно вырезать стерженьки по различным направлениям. Три из них перпендикулярно граням куба, параллельно диагонали

Каждый из примеров исключительны по своей характерности. Но путём точных исследований, ученым пришли к такому выводу, что все кристаллы в том или ином отношении обладают анизотропностью. Так же твёрдые аморфные образования могут быть и однородными и даже анизотропными (анизотропность, к примеру, может наблюдаться при растягивании или сдавливании стёкол), но аморфные тела не могут сами по себе принимать многогранную форму, ни при каких условиях.

Рис. 3 Выявление анизотропии теплопроводности на кварце (а) и ее отсутствия на стекле (б)

В качестве примера (рис. 1) анизотропных свойств кристаллических веществ прежде всего следует упомянуть про механическую анизотропность, которая заключается в следующем. Все кристаллические вещества раскалываются не одинаково вдоль различных направлений (слюда, гипс, графит и др.). Аморфные же вещества-во всех направлениях раскалываются одинаково, потому что аморфность характеризуются изотропностью (равносвойственностью) - физические свойства по всем направлениям проявляются одинаково.

Анизотропию теплопроводности легко пронаблюдать на следующем простом опыте. На грань кристалла кварца нанести слой цветного воска и поднести к центру грани накаленную на спиртовке иголку. Образовавшийся талый круг воска вокруг иголки примет форму эллипса на грани призмы или же форму неправильного треугольника на одной из граней головки кристалла. На изотропном же веществе, например, стекле - форма талого воска всегда будет правильным кругом.

Анизотропность проявляется и в том, что при взаимодействии на кристалл какого-либо растворителя, скорость химических реакций различна по различным направлениям. В результате каждый кристалл при растворении в итоге приобретает свои характерные формы.

В конечном итоге причиной анизотропности кристаллов - является то, что при упорядоченном расположении ионов, молекул или атомов силы взаимодействия между ними и межатомные расстояния (а также некоторые не связанные с ними прямо величины, например, электропроводность или поляризуемость) оказываются неодинаковыми по различным направлениям. Причиной анизотропии молекулярного кристалла может быть также асимметрия его молекул, хотелось бы отметить что все аминокислоты, кроме простейшей - глицина, асимметричны.

Любая частичка кристалла имеет строго определенный химический состав. Это свойство кристаллических веществ используется для получения химически чистых веществ. Например, при замораживании морской воды она становится пресной и пригодной для питья. Теперь угадайте, морской лед пресный или соленый?

2. Однородность

Однородность - выражается в том, что любые элементарные объемы кристаллического вещества, одинаково ориентированные в пространстве, абсолютно одинаковы по всем своим свойствам: имеют один и тот же цвет, массу, твердость и т.д. таким образом, всякий кристалл есть однородное, но в то же время и анизотропное тело. Однородным считается тело, в котором на конечных расстояниях от любой его точки найдутся другие, эквивалентные ей не только в физическом отношении, но и геометрическом. Другими словами, находятся в таком же окружении, как и исходные, поскольку размещением материальных частиц в кристаллическом пространстве «управляет» пространственная решетка, можно считать, что грань кристалла - это материализованная плоская узловая решетка, а ребро - материализованный узловой ряд. Как правило, хорошо развитые грани кристалла определяются узловыми сетками с наибольшей густотой расположения узлов. Точка, в которой сходятся три и более граней, называется вершиной кристалла.

Однородность присуща не только кристаллическим телам. Твердые аморфные образования также могут быть однородными. Но аморфные тела не могут сами по себе принимать многогранную форму.

Ведутся разработки, которые могут повысить коэффициент однородности кристаллов.

Это изобретение запатентовано нашими русскими учеными. Изобретение относится к сахарной промышленности, в частности к получению утфелей. Изобретение обеспечивает повышение коэффициента однородности кристаллов в утфеле, а также способствует увеличениею скорости роста кристаллов на завершающем этапе наращивания за счет постепенного роста коэффициента пересыщения.

Недостатками известного способа являются низкий коэффициент однородности кристаллов в утфеле первой кристаллизации, значительная длительность получения утфеля.

Технический результат изобретения заключается в повышении коэффициента однородности кристаллов в утфеле первой кристаллизации и интенсификации процесса получения утфеля.

3. Способность к самоогранению

Способность к самоогранению выражается в том, что любой обломок или выточенный из кристалла шарик в соответствующей для его роста среде с течением времени покрывается характерными для данного кристалла гранями. Эта особенность связана с кристаллической структурой. Стеклянный же шарик, например, такой особенностью не обладает.

К механическим свойствам кристаллов относятся свойства, связанные с такими механическими воздействиями на них, как удар, сжатие, растяжение и прочее - (спайность, пластическая деформация, излом, твердость, хрупкость).

Способность самоограняться, т.е. при определенных условиях принимать естественную многогранную форму. В этом также проявляется его правильное внутреннее строение. Именно это свойство отличает кристаллическое вещество от аморфного. Иллюстрацией этому служит пример. Два выточенных из кварца и стекла шарика опускают в раствор кремнезема. В результате шарик кварца покроется гранями, а стеклянный останется круглым.

Кристаллы одного и того же минерала могут иметь разную форму, величину и число граней, но углы между соответствующими гранями всегда будут постоянными (рис. 4 а-г) - это закон постоянства гранных углов в кристаллах. При этом величина и форма граней у различных кристаллов одного и того же вещества, расстояние между ними и даже их число могут меняться, но углы между соответствующими гранями во всех кристаллах одного и того же вещества остаются постоянными при одинаковых условиях давления и температуры. Углы между гранями кристаллов измеряются при помощи гониометра (угломера). Закон постоянства гранных углов объясняется тем, что все кристаллы одного вещества тождественны по внутреннему строению, т.е. имеют одну и ту же структуру.

Согласно этому закону кристаллы определенного вещества характеризуются своими определенными углами. Поэтому измерением углов можно доказать принадлежность исследуемого кристалла к тому или иному веществу.

У идеально образованных кристаллов наблюдается симметрия, которая у природных кристаллов встречается чрезвычайно редко из-за опережающего роста граней (рис. 4 д).

Рис. 4 закон постоянства гранных углов в кристаллах (а-г) и рост опережающих граней 1,3 и 5 растущего на стенке полости кристалла (д)

Спайностью называется такое свойство кристаллов при котором раскалываться или расщепляться по определенным кристаллографическим направлениям в итоге образовываются ровные гладкие плоскости, называемые плоскостями спайности.

Плоскости спайности ориентированы параллельно действительным или возможным граням кристаллов. Это свойство всецело зависит от внутреннего строения минералов и проявляется в тех направлениях, в которых силы сцепления между материальными частицами кристаллических решеток наименьшие.

Можно выделить в зависимости от степени совершенства несколько видов спайности:

Весьма совершенная - минерал легко расщепляется на отдельные тонкие пластинки или листочки, расколоть его в другом направлении очень трудно (слюды, гипс, тальк, хлорит).

Рис. 5 Хлорит (Mg, Fe) 3 (Si, Al) 4 O 10 (OH) 2 ·(Mg, Fe) 3 (OH) 6)

Совершенная - минерал сравнительно легко раскалывается преимущественно по плоскостям спайности, причем отбитые кусочки часто напоминают отдельные кристаллы (кальцит, галенит, галит, флюорит).

Рис. 6 Кальцит

Средняя - при раскалывании образуются как плоскости спайности, так и неровные изломы по случайным направлениям (пироксены, полевые шпаты).

Рис. 7 Полевые шпаты ({К, Na, Ca, иногда Ba} {Al 2 Si 2 или AlSi 3 } О 8))

Несовершенная - минералы раскалываются по произвольным направлениям с образованием неровных поверхностей излома, отдельные плоскости спайности обнаруживаются с трудом (самородная сера, пирит, апатит, оливин).

Рис. 8 Кристаллы апатита (Са 5 3 (F, Cl, ОН))

У некоторых минералов при раскалывании образуются только неровные поверхности, в этом случае говорят о весьма несовершенной спайности или отсутствии ее (кварц).

Рис. 9 Кварц(SiO 2)

Спайность может проявляться в одном, двух, трех, редко более направлениях. Для более детальной характеристики ее указывают направление, в котором проходит спайность, например по ромбоэдру - у кальцита, по кубу - у галита и галенита, по октаэдру - у флюорита.

Плоскости спайности нужно отличать от граней кристаллов: Плоскость, как правило, обладает более сильным блеском, образуют ряд параллельных друг другу плоскостей и в отличие от граней кристаллов на которых мы не можем наблюдать штриховки.

Таким образом, спайность может прослеживаться по одному (слюды), двум (полевые шпаты), трем (кальцит, галит), четырем (флюорит) и шести (сфалерит) направлениям. Степень совершенства спайности зависит от строения кристаллической решетки каждого минерала, так как разрыв по некоторым плоскостям (плоским сеткам) этой решетки из-за более слабых связей происходит гораздо легче, чем по другим направлениям. В случае одинаковых сил сцепления между частицами кристалла, спайность отсутствует (кварц).

Излом - способность минералов раскалываться не по плоскостям спайности, а по сложной неровной поверхности

Отдельность - свойство некоторых минералов раскалываться с образованием параллельных, хотя чаще всего не совсем ровных плоскостей, не обусловленных строением кристаллической решетки, которое иногда принимают за спайность. В отличие от спайности отдельность - свойство лишь некоторых отдельных экземпляров данного минерала, а не минерального вида в целом. Главным отличием отдельности от спайности является то, что получившиеся выколки невозможно расщеплять далее на более мелкие обломки с ровными параллельными сколами.

Симметрия - наиболее общая закономерность, связанная со строением и свойствами кристаллического вещества. Она является одним из обобщающих фундаментальных понятий физики и естествознания в целом. «Симметрия есть свойство геометрических фигур повторять свои части, или, выражаясь точнее, свойство их в различных положениях приходить в совмещение с первоначальным положением». Для удобства изучения пользуются моделями кристаллов, передающих формы идеальных кристаллов. Для описания симметрии кристаллов необходимо определить элементы симметрии. Таким образом, симметричным является такой объект, который может быть совмещен сам с собой определенными преобразованиями: поворотами или (и) отражениями (рисунок 10).

1. Плоскость симметрии - это воображаемая плоскость, которая делит кристалл на две равные части, причем одна из частей является как бы зеркальным отражение другой. В кристалле может быть несколько плоскостей симметрии. Плоскость симметрии обозначается латинской буквой Р.

2. Ось симметрии - это линия, при вращении вокруг которой на 360° кристалл n-ое количество раз повторяет свое начальное положение в пространстве. Обозначается буквой L. n - определяет порядок оси симметрии, которые в природе могут быть только 2, 3, 4 и 6-го порядка, т.е. L2, L3, L4 и L6. Осей пятого и выше шестого порядка в кристаллах нет, а оси первого порядка не учитываются.

3. Центр симметрии - воображаемая точка, расположенная внутри кристалла, в которой пересекаются и делятся пополам линии, соединяющие соответствующие точки на поверхности кристалла1. Центр симметрии обозначается буквой С.

Все многообразие встречающихся в природе кристаллических форм объединяется в семь сингоний (систем): 1) кубическую; 2) гексагональную; 3) тетрагональную (квадратную); 4) тригональную; 5) ромбическую; 6) моноклинальную и 7) триклинную.

4. Постоянная температура плавления

Плавление - переход вещества из твердого состояния в жидкое.

Выражается в том, что при нагревании кристаллического тела температура повышается до определенного предела; при дальнейшем же нагревании вещество начинает плавиться, а температура некоторое время остается постоянной, так как все тепло идет на разрушение кристаллической решетки. Причиной этого явления, считается что основная часть энергия нагревателя, подводимая к твердому телу, идет на уменьшение связей между частицами вещества, т.е. на разрушение кристаллической решетки. При этом возрастает энергия взаимодействия между частицами. Расплавленное вещество обладает большим запасом внутренней энергии, чем в твердом состоянии. Оставшаяся часть теплоты плавления расходуется на совершение работы по изменению объема тела при его плавлении. Температура, при которой начинается плавление, называется температурой плавления.

При плавлении объем большинства кристаллических тел увеличивается (на 3-6%), а при отвердевании уменьшается. Но, существуют вещества, у которых при плавлении объем уменьшается, а при отвердевании - увеличивается.

К ним относятся, например, вода и чугун, кремний и некоторые другие. Именно поэтому лёд плавает на поверхности воды, а твердый чугун - в собственном расплаве.

Аморфные вещества в отличие от кристаллических не имеют четко выраженной температуры плавления (янтарь, смола, стекло).

Рис. 12 Янтарь

Количество теплоты, необходимой для плавления вещества, равно произведению удельной теплоты плавления на массу данного вещества.

Удельная теплота плавления показывает, какое кол теплоты необходимо для полного превращения 1 кг вещества из твердого состояния в жидкое, взятого при темп плавления.

Единицей удельной теплоты плавления в СИ служит 1Дж/кг.

В процессе плавления температура кристалла остается постоянной. Эта температура называется температурой плавления. У каждого вещества своя температура плавления.

Температура плавления для данного вещества зависит от атмосферного давления.

У кристаллических тел при температуре плавления можно наблюдать вещество одновременно в твердом и жидком состояниях. На кривых охлаждения (или нагревания) кристаллических и аморфных веществ, можно видеть, что в первом случае имеются два резких перегиба, соответствующие началу и концу кристаллизации; в случае же охлаждения аморфного вещества мы имеем плавную кривую. По этому признаку легко отличить кристаллические вещества от аморфных.

Список литературы

1. Справочник химика 21 «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ» стр. 10 (http://chem21.info/info/1737099/)

2. Справочник по геологии (http://www.geolib.net/crystallography/vazhneyshie-svoystva-kristallov.html)

3. «УрФУ имени первого Президента России Б.Н. Ельцина», раздел Геометрическая кристаллография (http://media.ls.urfu.ru/154/489/1317/)

4. Глава 1. Кристаллография с основами кристаллохимии и минералогия (http://kafgeo.igpu.ru/web-text-books/geology/r1-1.htm)

5. Заявка: 2008147470/13, 01.12.2008; МПК C13F1/02 (2006.01) C13F1/00 (2006.01). Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия (RU) (http://bd.patent.su/2371000-2371999/pat/servl/servlet939d.html)

6. Тульский государственный педагогический университет им Л.Н. Толстого Кафедра экологии Голынская Ф.А. «Понятие о минералах как о кристаллических веществах» (http://tsput.ru/res/geogr/geology/lec2.html)

7. Компьютерный обучающий курс «Общая геология» Курс лекций. Лекция 3 (http://igd.sfu-kras.ru/sites/igd.institute.sfu-kras.ru/files/kurs-geologia/%D0% BB % D0% B5% D0% BA % D1% 86% D0% B8% D0% B8/%D0% BB % D0% B5% D0% BA % D1% 86% D0% B8% D1% 8F_3.htm)

8. Класс физика (http://class-fizika.narod.ru/8_11.htm)

Подобные документы

    Кристаллическое и аморфное состояния твердых тел, причины точечных и линейных дефектов. Зарождение и рост кристаллов. Искусственное получение драгоценных камней, твердые растворы и жидкие кристаллы. Оптические свойства холестерических жидких кристаллов.

    реферат , добавлен 26.04.2010

    Жидкие кристаллы как фазовое состояние, в которое переходят некоторые вещества при определенных условиях, их основные физические свойства и факторы, на них влияющие. История исследования, типы, использование жидких кристаллов в производстве мониторов.

    контрольная работа , добавлен 06.12.2013

    Особенности и свойства жидкокристаллического состояния вещества. Структура смектических жидких кристаллов, свойства их модификаций. Сегнетоэлектрические характеристики. Исследование геликоидальной структуры смектика C* методом молекулярной динамики.

    реферат , добавлен 18.12.2013

    История развития представления о жидких кристаллах. Жидкие кристаллы, их виды и основные свойства. Оптическая активность жидких кристаллов и их структурные свойства. Эффект Фредерикса. Физический принцип действия устройств на ЖК. Оптический микрофон.

    учебное пособие , добавлен 14.12.2010

    Рассмотрение истории открытия и направлений применения жидких кристаллов; их классификация на смектические, нематические и холестерические. Изучение оптических, диамагнитных, диэлектрических и акустооптических свойств жидкокристаллических веществ.

    курсовая работа , добавлен 18.06.2012

    Определение жидких кристаллов, их сущность, история открытия, свойства, особенности, классификация и направления использования. Характеристика классов термотропных жидких кристаллов. Трансляционные степени свободы колончатых фаз или "жидких нитей".

    реферат , добавлен 28.12.2009

    Кристаллы - реальные твердые тела. Термодинамика точечных дефектов в кристаллах, их миграция, источники и стоки. Исследование дислокации, линейного дефекта кристаллической структуры твёрдых тел. Двумерные и трехмерные дефекты. Аморфные твердые тела.

    доклад , добавлен 07.01.2015

    презентация , добавлен 29.09.2013

    Понятие и основные черты конденсированного состояния вещества, характерные процессы. Кристаллические и аморфные тела. Сущность и особенности анизотропии кристаллов. Отличительные черты поликристаллов и полимеров. Тепловые свойства и структура кристаллов.

    курс лекций , добавлен 21.02.2009

    Оценка вязкостно-температурных свойств (масел). Зависимость температуры вспышки от давления. Дисперсия, оптическая активность. Лабораторные методы перегонки нефти и нефтепродуктов. Теплота плавления и сублимации. Удельная и молекулярная рефракция.

Страница 1

Введение

Кристаллические тела являются одой из разновидностей минералов.

Кристаллическими называют твердые тела, физические свойства которых не одинаковы в различных направлениях, но совпадают в параллельных направлениях.

Семейство кристаллических тел состоит из двух групп - монокристаллов и поликристаллов. Первые иногда обладают геометрически правильной внешней формой, а вторые, подобно аморфным телам, не имеют присущей данному веществу определенной формы. Но в отличие от аморфных тел структура поликристаллов неоднородна, зерниста. Они представляют собой совокупность сросшихся друг с другом хаотически ориентированных маленьких кристаллов - кристаллитов. Поликристаллическую структуру чугуна, например, можно обнаружить, если рассмотреть с помощью лупы образец на изломе.

По размерам кристаллы бывают различными. Многие из них можно увидеть только в микроскоп. Но встречаются гигантские кристаллы массой в несколько тонн.

Строение кристаллов

Разнообразие кристаллов по форме очень велико. Кристаллы могут иметь от четырех до нескольких сотен граней. Но при этом они обладают замечательным свойством - какими бы ни были размеры, форма и число граней одного и того же кристалла, все плоские грани пересекаются друг с другом под определенными углами. Углы между соответственными гранями всегда одинаковы. Кристаллы каменной соли, например, могут иметь форму куба, параллелепипеда, призмы или тела более сложной формы, но всегда их грани пересекаются под прямыми углами. Грани кварца имеют форму неправильных шестиугольников, но углы между гранями всегда одни и те же - 120°.

Закон постоянства углов, открытый в 1669 г. датчанином Николаем Стено, является важнейшим законом науки о кристаллах - кристаллографии.

Измерение углов между гранями кристаллов имеет очень большое практическое значение, так как по результатам этих измерений во многих случаях может быть достоверно определена природа минерала. Простейшим прибором для измерения углов кристаллов является прикладной гониометр. Применение прикладного гониометра возможно только для исследования крупных кристаллов, невелика и точность измерений, выполненных с его помощью. Различить, например, кристаллы кальцита и селитры, сход­ные по форме и имеющие углы между соответственными гранями, равные 101°55" первого и 102°41,5" у второго, с помощью прикладного гониометра очень трудно. Поэтому в лабораторных условиях измерений углов между гранями кристалла обычно выполняют с помощью более сложных и точных приборов.

Кристаллы правильной геометрической формы встречаются в природе редко. Совместное действие таких неблагоприятных факторов, как колебания температуры, тесное окружение соседними твердыми телами, не позволяют растущему кристаллу приобрести характерную для него форму. Кроме того, значительная часть кристаллов, имевших в далеком прошлом совершенную огранку, успела утратить ее под действием воды, ветра, трения о другие твердые тела. Так, многие округлые прозрачные зерна, которые можно найти в прибрежном песке, являются кристаллами кварца, лишившимися граней в результате длительного трения друг о друга.

Существует несколько способов, позволяющих узнать, является ли твердое тело кристаллом. Самый простой из них, но очень малопригодный для использования, был открыт в результате случайного наблюдения в конце XVIII в. Французский ученый Ренне Гаюи нечаянно уронил один из кристаллов своей коллекции. Рассмотрев осколки кристалла, он заметил, что многие из них представляют собой уменьшенные копии исходного образца.

Замечательное свойство многих кристаллов давать при дроблении осколки, подобные по форме исходному кристаллу, позволило Гаюи высказать гипотезу, что все кристаллы состоят из плотно уложенных рядами маленьких, невидимых в микроскоп, частиц, имеющих присущую данному веществу правильную геометрическую форму. Многообразие геометрических форм Гаюи объяснил не только различной формой «кирпичиков», из которых они состоят, но и различными способами их укладки.

Гипотеза Гаюи правильно отразила сущность явления - упорядоченное и плотное расположение структурных элементов кристаллов, но она не ответила на целый ряд важнейших вопросов. Существует ли предел сохранению формы? Если существует, то что представляет собой самый маленький «кирпичик»? Имеют ли атомы и молекулы вещества форму многогранников?

Еще в XVIII в. английский ученый Роберт Гук и голландский ученый Христиан Гюйгенс обратили внимание на возможность построения правильных многогранников из плотно укладываемых шаров. Они предположили, что кристаллы построены из шарообразных частиц - атомов или молекул. Внешние формы кристаллов согласно этой гипотезе являются следствием особенностей плотной упаковки атомов или молекул. Независимо от них к такому же выводу пришел в 1748 г. великий русский ученый М. В. Ломоносов.

При плотнейшей укладке шаров в один плоский слой каждый шар оказывается окруженным шестью другими шарами, центры которых образуют правильный шестиугольник. Если укладку второго слоя вести по лункам между шарами первого слоя, то второй слой окажется таким же, как и первый, только смещенным относительно него в пространстве.

Лекция 16

Физические свойства кристаллов

Изучением структуры и физических свойств твердых тел занимается физика твердого тела. Она устанавливает зависимость физических свойств от атомной структуры вещества, разрабатывает методы получения и исследования новых кристаллических материалов, обладающих заданными характеристиками.

Физические свойства кристаллов определяются:

1) природой химических элементов, входящих в состав кристаллов;

2) типом химической связи;

3) геометрическим характером структуры, т. е. взаимным расположением атомов в кристаллической структуре;

4) несовершенством структуры, т. е. наличием дефектов.

С другой стороны, именно по физическим свойствам кристаллов мы обычно судим о типе химической связи.

О прочности кристаллов проще всего можно судить по их механическим и термическим свойствам. Чем прочнее кристалл, тем больше его твердость и тем выше его температура плавления. Если изучать изменение твердости с изменением состава в ряду однотипных веществ и сопоставлять полученные данные с соответствующими значениями для температур плавления, то можно заметить «параллелизм» в изменении этих свойств.

Напомню, что самой характерной особенностью физических свойств кристаллов является их симметрия и анизотропия . Анизотропная среда характеризуется зависимостью измеряемого свойства от направления измерения.

Мы уже говорили, что кристаллохимия тесно связана с кристаллографией и физикой. Поэтому, основной задачей кристаллофизики (раздела кристаллографии, изучающего физические свойства кристаллов) является изучение закономерностей физических свойств кристаллов от их строения, а также зависимости этих свойств от внешних воздействий.

Физические свойства веществ можно подразделить на две группы: структурно чувствительные и структурно нечувствительные свойства. Первые зависят от атомной структуры кристаллов, вторые - главным образом от электронного строения и типа химической связи. Примером первых могут служить механические свойства (масса, плотность, теплоемкость, температура плавления и др.), примером вторых - тепло - и электропроводность , оптические и др. свойства.

Так, хорошая электропроводность металлов, обусловленная наличием свободных электронов, будет наблюдаться не только в кристаллах, но и в расплавленных металлах.

Ионный характер связи проявляется, в частности, в том, что многие соли, например, галогениды щелочных металлов, растворяются в полярных растворителях, диссоциируя на ионы. Однако факт отсутствия растворимости не может еще служить доказательством наличия у соединения неполярной связи. Так, энергия связи, например, у оксидов настолько больше энергии связи щелочных галогенидов, что диэлектрическая постоянная воды уже недостаточна для отрыва ионов от кристалла.

Кроме того, некоторые соединения, преимущественно с гомеополярным типом связи, под влиянием большой диэлектрической постоянной полярного растворителя могут в растворе диссоциировать на ионы, хотя в кристаллическом состоянии ионными соединениями они могут и не быть (например НСl, НВr).

В гетеродесмических соединениях некоторые свойства, например механическая прочность соединений, зависят только от одного (слабейшего) типа связи.

Поэтому, кристалл можно рассматривать, с одной стороны, как прерывистую (дискретную) среду. С другой стороны – кристаллическое вещество можно рассматривать как сплошную анизотропную среду. В этом случае физические свойства, проявляющиеся в определенном направлении, не зависят от трансляций (переносов). Это позволяет описывать симметрию физических свойств с помощью точечных групп симметрии.

Описывая симметрию кристалла, мы принимаем во внимание только внешнюю форму, т. е. рассматривает симметрию геометрических фигур. П. Кюри показал, что симметрия материальных фигур описывается бесконечным числом точечных групп, которые в пределе стремятся к рассмотренным ранее семи предельным группам симметрии (семейства вращающегося конуса, неподвижного конуса, вращающегося цилиндра, скрученного цилиндра, неподвижного цилиндра, семейства шара с вращающимися точками поверхности, семейства неподвижного шара).

Предельными точечными группами ‑ группами Кюри – называются точечные группы, содержащие оси бесконечных порядков. Существует всего семь предельных групп: ¥, ¥mm, ¥/m, ¥22, ¥/mm, ¥/¥, ¥/¥mm.

Связь между точечной группой симметрии кристалла и симметрией его физических свойств сформулировал немецкий физик Ф. Нейманн: материал в отношении физических свойств обнаруживает симметрию того же рода, что и его кристаллографическая форма. Это положение известно как принцип Неймана.

Ученик Ф. Немана немецкий физик В. Фойгт существенно уточнил указанный принцип и сформулировал его следующим образом: группа симметрии любого физического свойства должна включать в себя все элементы точечной группы симметрии кристалла.

Рассмотрим некоторые физические свойства кристаллов.

Плотность кристаллов.

Плотность вещества зависит от кристаллической структуры вещества, его химического состава, коэффициента упаковки атомов, валентностей и радиусов слагающих ее частиц.

Плотность изменяется с изменением температуры и давления, т. к. эти факторы вызывают расширение или сжатие вещества.

Зависимость плотности от структуры можно продемонстрировать на примере трех модификаций Al2SiO5:

· андалузит (r = 3,14 – 3,16 г/см3);

· силлиманит (r = 3,23 – 3,27 г/см3);

· кианит (r = 3,53 – 3,65 г/см3).

С увеличением коэффициента упаковки кристаллической структуры плотность вещества возрастает. Например, при полиморфном переходе графита в алмаз с изменением координационного числа атомов углерода с 3 до 4 соответственно возрастает и плотность от 2,2 до 3,5 г/см3).

Плотность реальных кристаллов обычно меньше, чем расчетная плотность (идеальных кристаллов) из-за присутствия дефектов в их структурах. Плотность алмаза, например, колеблется в пределах 2,7 – 3,7 г/см3. Таким образом, по уменьшению реальной плотности кристаллов можно судить о степени их дефектности.

Плотность изменяется и с изменением химического состава вещества при изоморфных замещениях – при переходе от одного члена изоморфного ряда к другому. Например, в ряду оливинов (Mg , Fe 2+ )2[ SiO 4 ] плотность возрастает по мере замены катионов Mg2+ на Fe2+ от r = 3,22 г/см3 у форстерита Mg 2 [ SiO 4 ] до r = 4,39 г/см3 у фаялита .

Твердость.

Под твердостью подразумевается степень сопротивления кристалла внешнему воздействию. Твердость не является физической постоянной. Ее величина зависит не только от изучаемого материала, но и от условий измерения.

Твердость зависит от:

· типа структуры;

· коэффициента упаковки (удельного веса);

· заряда образующих кристалл ионов.

Например, полиморфные модификации CaCO3 – кальцит и арагонит – имеют плотности 3 и 4 соответственно и отличаются разной плотностью их структур:

· для структуры кальцита с КЧСа = 6 ‑ r = 2,72;

· для структуры арагонита с КЧСа = 9 ‑ r = 2,94 г/см3).

В ряду одинаково построенных кристаллов твердость возрастает у увеличением зарядов и уменьшением размеров катионов. Присутствие в структурах достаточно крупных анионов типа F-, OH-, молекул Н2О понижает твердость.

Грани разных форм кристаллов обладают различной ретикулярной плотностью и отличаются по своей твердости. Так, наибольшей твердостью в структуре алмаза обладают грани октаэдра (111), имеющие большую ретикулярную плотность по сравнению с гранями куба (100).

Способность к деформации.

Способность кристалла к пластической деформации определяется, прежде всего, характером химической связи между его структурными элементами.

Ковалентная связь , обладающая строгой направленностью, резко ослабевает уже при незначительных смещениях атомов относительно друг друга. Поэтому кристаллы с ковалентным типом связи (Sb, Bi, As, se и др.) не проявляют способность к пластической деформации.

Металлическая связь не имеет направленного характера и при смещении атомов относительно друг друга меняется слабо. Это определяет высокую степень пластичности металлов (ковкость). Наиболее ковкими являются те металлы, структуры которых построены по закону кубической плотнейшей упаковки, имеющей четыре направления плотноупакованных слоев. Менее ковки металлы с гексагональной плотнейшей упаковкой – с одним направлением плотнейших слоев. Так, среди полиморфных модификаций железа a-Fe и b-Fe ковкостью почти не обладают (решетка I типа), тогда как g-Fe с кубической плотнейшей упаковкой (гранецентрированная кубическая решетка) – ковкий металл как Cu, Pt, Au, Ag и др.

Ионная связь не имеет направленного характера. Поэтому типичные ионные кристаллы (NaCl, CaF2, CaTe и др.) такие же хрупкие, как кристаллы с ковалентной связью. Но в то же время они обладают достаточно высокой пластичностью. Скольжение в них протекает оп определенным кристаллографическим направлениям. Это объясняется тем, что в структуре кристалла можно выделить сетки (110), образованные либо одними ионами Na+, либо ионами Cl-. При пластической деформации одна плоская сетка передвигается относительно соседней таким образом, что ионы Na+ скользят вдоль ионов Cl-. Разноименность зарядов ионов в соседних сетках препятствует разрыву, и они остаются параллельными своему исходному положению. Скольжение вдоль этих слоев протекает при минимальном нарушении в расположении атомов и является наиболее легким.

Тепловые свойства кристаллов.

Теплопроводность тесно связана с симметрией. Наиболее наглядно это можно продемонстрировать на следующем опыте. Покроем тонким слоем парафина грани трех кристаллов: куба, гексагональной призмы, прямого параллелепипеда. Острием тонкой раскаленной иглы прикоснемся к каждой из граней этих кристаллов. По очертаниям пятен плавления можно судить о скорости распространения теплоты на плоскостях граней по различным направлениям.

На кристалле кубической сингонии контуры пятен плавления на всех гранях будут иметь форму круга, что указывает на одинаковую скорость распространения теплоты по всем направлениям от точки касания горячей иглой. Форма пятен в идее кругов на всех гранях кубического кристалла связана с его симметрией.

Форма пятен на верхней и нижней гранях гексагональной призмы будет также иметь форму круга (скорость распространения теплоты в плоскости, перпендикулярной главной оси кристалла средней категории одинакова по всем направлениям). На гранях гексагональной призмы пятна плавления будут иметь форму эллипсов, так как перпендикулярно этим граням проходят оси 2-го порядка.

На всех гранях прямого параллелепипеда (кристалл ортогональной сингонии) пятна плавления будут иметь форму эллипса, т. к. перпендикулярно этим граням проходят оси 2-го порядка.

Итак, скорость распространения теплоты по телу кристалла находится в прямой зависимости от того, вдоль какого линейного элемента симметрии она распространяется. В кристаллах кубической сингонии поверхность распространения теплоты будет иметь форму сферы. Следовательно, в отношении теплопроводности кристаллы кубической сингонии являются изотропными, т. е. по всем направлениям равносвойственными. Поверхность теплопроводности кристаллов средней категории выражается эллипсоидом вращения (параллельно главной оси). В кристаллах низшей категор ии все поверхности теплопроводности имеют форму эллипсоида.

Анизотропия теплопроводности тесно связана со структурой кристаллического вещества. Так, наиболее плотным атомным сеткам и рядам соответствуют большие значения теплопроводности. Поэтому слоистые и цепочечные кристаллы имеют большие различия в направлениях теплопроводности.

Теплопроводность зависит также от степени дефектности кристалла – у более дефектных кристаллов она ниже, чем у синтетических. Вещество в аморфном состоянии обладает более низкой теплопроводностью, чем кристаллы того же состава. Например, теплопроводность кварцевого стекла значительно ниже теплопроводности кристаллов кварца. На этом свойстве основано широкое применение посуды из кварцевого стекла.

Оптические свойства.

Каждое вещество с определенной кристаллической структурой характеризуется своеобразными оптическими свойствами. Оптические свойства тесно связаны с кристаллическим строением твердых тел, его симметрией.

В отношении оптических свойств все вещества можно разделить на оптически изотропные и анизотропные. К первым относятся аморфные тела и кристаллы высшей категории, ко вторым – все остальные. В оптически изотропных средах световая волна, представляющая собой совокупность поперечных гармонических колебаний электромагнитной природы, распространяется с одинаковой скоростью во всех направления. При этом колебания вектора напряженности электрического и магнитного полей происходят также по всевозможным направлениям, но в плоскости, перпендикулярной направлению луча. Вдоль его направления происходит передача световой энергии. Такой свет называется естественным или неполяризованным (рисунок а, б).

В оптически анизотропных средах скорости распространения волны в разных направлениях могут быть различными. При определенных условиях может быть получен так называемый поляризованный свет , для которого все колебания вектора электрического и магнитного полей проходят в строго определенном направлении (рисунок в, г). На поведении такого поляризованного света в кристаллах основана методика кристаллооптических исследований с помощью поляризационного микроскопа.

Двойное лучепреломление света в кристаллах.

линейно поляризованным с взаимно перпендикулярными плоскостями колебаний. Разложение света на два поляризованных луча называется двойным лучепреломлением или двупреломлением.

Двупреломление света наблюдается в кристаллах всех сингоний, за исключением кубической. В кристаллах низшей и средней категории двупреломление происходит по всем направлениям, за исключением одного или двух направлений, называемых оптическими осями .

Явление двупреломления связано с анизотропией кристаллов. Оптическая анизотропность кристаллов выражается в том, что скорость распространения света в них различна по разным направлениям.

В кристаллах средней категории среди множества направлений оптической анизотропии существует одно единичное направление – оптическая ось , совпадающее с главной осью симметрии 3-го, 4-го, 6-го порядков. Вдоль этого направления свет идет не раздваиваясь.

В кристаллах низшей категории имеется два направления, вдоль которых свет не раздваивается. Сечения кристаллов, перпендикулярные этим направлениям, совпадают с оптически изотропными сечениями.

Влияние структурных особенностей на оптические свойства.

В кристаллических структурах со слоями из плотноупакованных атомов расстояние между атомами внутри слоя превышают расстояние между ближайшими атомами, расположенными в соседних слоях. Подобная упорядоченность приводит к более легкой поляризации, если вектор напряжения электрического поля световой волны будет параллелен плоскости слоев.

Электрические свойства.

Все вещества можно разделить на проводники, полупроводники и диэлектрики.

Некоторые кристаллы (диэлектрики) поляризуются под влиянием внешних воздействий. Способность диэлектриков поляризоваться – одно из их фундаментальных свойств. Поляризация – это процесс, связанный с созданием в диэлектрике под действием внешнего электрического поля электрических диполей.

В кристаллографии и физике твердого тела важное теоретическое практическое значение получили явления пьезоэлектричества и пироэлектричества.

Пьезоэлектрический эффект – изменение поляризации некоторых диэлектрических кристаллов при механической деформации. Величина возникших зарядов пропорциональна приложенной силе. Знак заряда зависит от типа кристаллической структуры. Пьезоэлектрический эффект возникает только в кристаллах, лишенных центра инверсии, т. е. имеющих полярные направления. Например, кристаллы кварца SiO2, сфалерита (ZnS).

Пироэлектрический эффект – появление электрических зарядов на поверхности некоторых кристаллов при их нагревании или охлаждении. Пироэлектрический эффект возникает только в диэлектрических кристаллах с единственным полярным направлением, противоположные концы которого не могут быть совмещены ни одной операцией данной группы симметрии. Появление электрических зарядов может происходить только по определенным, полярным направления. Грани, перпендикулярные этим направлениям, получают разные по знаку заряды: одна – положительный, а другая – отрицательный. Пироэлектрический эффект может возникнуть в кристаллах, относящихся к одному из полярных классов симметрии: 1, 2, 3, 4, 6, m, mm2, 3m, 4mm, 6mm.

Из геометрической кристаллографии следует, что направления, проходящие через центр симметрии, не могут быть полярными. Не могут быть полярными и направления, перпендикулярные плоскостям симметрии или осям четного порядка.

В классе пироэлектриков выделяют два подкласса. К первому относятся линейные пироэлектрики, у которых во внешнем поле электрическая поляризация линейно зависит от напряженности электрического поля. Например, турмалин NaMgAl3B3.Si6(O, OH)30.

Кристаллы второго подкласса называются сегнетоэлектриками. У них зависимость поляризации от напряженности внешнего поля носит нелинейный характер и поляризуемость зависит от величины внешнего поля. Нелинейная зависимость поляризации от напряженности электрического поля характеризуется петлей гистерезиса. Эта особенность сегнетоэлектриков предполагает сохранение у них электрической поляризации в отсутствии внешнего поля. Благодаря этому кристаллы сегнетовой соли (отсюда название сегнетоэлектрики) оказались надежными хранителями электрической энергии и регистраторами электрических сигналов, что позволяет их использовать в «ячейках памяти» ЭВМ.

Магнитные свойства.

Это способность тел взаимодействовать с магнитным полем, т. е. намагничиваться при помещении их в магнитное поле. В зависимости от величины магнитной восприимчивости различают диамагнитные, парамагнитные, ферромагнитные и антиферромагнитные кристаллы.

Магнитные свойства всех веществ зависят не только от особенностей их кристаллической структуры, но и от природы слагающих их атомов (ионов), т. е. магнетизм определяется электронным строением оболочек и ядер, а также орбитальным движением вокруг них электронов (спинами).

При внесении атома (иона) в магнитное поле изменяется угловая скорость движения электронов на орбите за счет того, что на первоначальное вращательное движение электронов вокруг ядра накладывается дополнительное вращательное движение, в результате чего атом получает дополнительный магнитный момент. При этом если все электроны с противоположными спинами в атоме сгруппированы попарно (рисунок А), то магнитные моменты электронов оказываются скомпенсированными и их суммарный магнитный момент будет равен нулю. Такие атомы называются диамагнитными, а вещества, состоящие из них – диамагнетиками . Например, инертные газы, металлы В-подгрупп – Cu, Ag, Au, Zn, Cd, большинство ионных кристаллов (NaCl, CaF2), а также вещества с преобладающей ковалентной связью – Bi, Sb, Ga, графит. В кристаллах со слоистыми структурами магнитная восприимчивость для направлений, лежащих в слое, значительной превышает таковую для перпендикулярных направлений.

При заполнении электронных оболочек в атомах электроны стремятся быть неспаренными. Поэтому существует большое количество веществ, магнитные моменты электронов, в атомах которых, расположены беспорядочно и при отсутствии внешнего магнитного поля в них не происходит самопроизвольная ориентация магнитных моментов (рисунок Б). Суммарный магнитный момент, обусловленный несвязанными попарно и слабо взаимодействующими друг с другом электронами, будет постоянным, положительным или несколько большим, чем у диэлектриков. Такие атомы называются магнитными, а вещества – парамагнетиками . При внесении парамагнетика в магнитное поле разориентированные спины приобретут некоторую ориентировку, в результате чего наблюдаются три типа упорядочения нескомпенсированных магнитных моментов – три типа явлений: ферромагнетизм (рисунок В), антиферромагнетизм (рисунок Г) и ферримагнетизм (рисунок Д).

Ферромагнитными свойствами обладают вещества, магнитные моменты атомов (ионов) которых направлены параллельно друг другу, в результате чего внешнее магнитное поле может усилиться в миллионы раз. Название группы связано с присутствием в ней элементов подгруппы железа Fe, Ni, Co.

Если магнитные моменты отдельных атомов антипараллельны и равны, то суммарный магнитный момент атомов равен нулю. Такие вещества называются антиферромагнетиками. К ним относятся оксиды переходных металлов – MnO, NiO, CoO, FeO, многие фториды, хлориды, сульфиды, селениды и др.

При неравенстве антипараллельных моментов атомов структуры кристаллов суммарный момент оказывается отличным от нуля и такие структуры обладают спонтанной намагниченность. Подобными свойствами обладают ферриты (Fe3O4, минералы группы граната).

Понравилась статья? Поделитесь ей