Контакты

Периодической функцией времени. Свойства периодических функций

ГАРМОНИЧЕСКИЙ АНАЛИЗ

Введение .

Современное развитие техники предъявляет повышенные требования к математической подготовке инженеров. В результате постановки и исследования ряда конкретных проблем механики и физики возникла теория тригонометрических рядов. Важнейшую роль ряды Фурье играют во всех областях техники, опирающихся на теорию колебаний и теорию спектрального анализа. Например, в системах передачи данных для описания сигналов практическое применение спектральных представлений неизменно приводит к необходимости экспериментального осуществления разложения Фурье. Особенно велика роль тригонометрических рядов в электротехнике при изучении периодических несинусоидальных токов: амплитудный спектр функции находится с помощью ряда Фурье в комплексной форме. Для представления непериодических процессов применяется интеграл Фурье.

Тригонометрические ряды находят важное применение в многочисленных разделах математики и доставляют особенно удобные методы для решения трудных задач математической физики, например, задачи о колебании струны и задачи о распространении тепла в стержне.

Периодические функции.

Многие задачи науки и техники связаны с периодическими функциями, отражающими циклические процессы.

Определение 1. Периодическими называются явления, повторяющиеся в одной и той же последовательности и в одном и том же виде через определенные интервалы аргумента.

Пример. В спектральном анализе – спектры.

Определение 2. Функция у = f (x ) называется периодической с периодом Т , если f (x + Т ) = f (x ) при всех х и x + Т из области определения функции.

На рисунке период изображенной функции Т = 2.

Определение 3. Наименьший положительный период функции называется основным периодом.

Там, где приходится иметь дело с периодическими явлениями, почти всегда встречаются тригонометрические функции.

Период функций равен , период функций равен .

Период тригонометрических функций с аргументом (ах ) находится по формуле:

.

Пример. Найти основной период функций 1) .

Решение . 1) . 2) .

Лемма. Если f (x ) имеет период Т , то интеграл этой функции, взятый в пределах, отличающихся на Т , не зависит от выбора нижнего предела интегрирования, т.е. = .

Основной период сложной периодической функции у = f (x ) (состоящей из суммы периодических функций) – это наименьшее общее кратное периодов составляющих функций.

То есть, если f (x ) = f 1 (x ) + f 2 (x ), Т 1 – период функции f 1 (x ), Т 2 – период функции f 2 (x ), то наименьший положительный период Т должен удовлетворять условию:

T = nT 1 + kT 2 , где (*) –

Цель: обобщить и систематизировать знания учащихся по теме “Периодичность функций”; формировать навыки применения свойств периодической функции, нахождения наименьшего положительного периода функции, построения графиков периодических функций; содействовать повышению интереса к изучению математики; воспитывать наблюдательность, аккуратность.

Оборудование: компьютер, мультимедийный проектор, карточки с заданиями, слайды, часы, таблицы орнаментов, элементы народного промысла

“Математика – это то, посредством чего люди управляют природой и собой”
А.Н. Колмогоров

Ход урока

I. Организационный этап.

Проверка готовности учащихся к уроку. Сообщение темы и задач урока.

II. Проверка домашнего задания.

Домашнее задание проверяем по образцам, наиболее сложные моменты обсуждаем.

III. Обобщение и систематизация знаний.

1. Устная фронтальная работа.

Вопросы теории.

1) Сформируйте определение периода функции
2) Назовите наименьший положительный период функций y=sin(x), y=cos(x)
3). Назовите наименьший положительный период функций y=tg(x), y=ctg(x)
4) Докажите с помощью круга верность соотношений:

y=sin(x) = sin(x+360º)
y=cos(x) = cos(x+360º)
y=tg(x) = tg(x+180º)
y=ctg(x) = ctg(x+180º)

tg(x+π n)=tgx, n € Z
ctg(x+π n)=ctgx, n € Z

sin(x+2π n)=sinx, n € Z
cos(x+2π n)=cosx, n € Z

5) Как построить график периодической функции?

Устные упражнения.

1) Доказать следующие соотношения

a) sin(740º ) = sin(20º )
b) cos(54º ) = cos(-1026º)
c) sin(-1000º) = sin(80º )

2. Доказать, что угол в 540º является одним из периодов функции y= cos(2x)

3. Доказать, что угол в 360º является одним из периодов функции y=tg(x)

4. Данные выражения преобразовать так, чтобы входящие в них углы по абсолютной величине не превышали 90º .

a) tg375º
b) ctg530º
c) sin1268º
d) cos(-7363º)

5. Где вы встречались со словами ПЕРИОД, ПЕРИОДИЧНОСТЬ?

Ответы учащихся: Период в музыке – построение, в котором изложено более или менее завершенная музыкальная мысль. Геологический период – часть эры и разделяется на эпохи с периодом от 35 до 90 млн. лет.

Период полураспада радиоактивного вещества. Периодическая дробь. Периодическая печать – печатные издания, появляющиеся в строго определенные сроки. Периодическая система Менделеева.

6. На рисунках изображены части графиков периодических функций. Определите период функции. Определить период функции.

Ответ : Т=2; Т=2; Т=4; Т=8.

7. Где в жизни вы встречались с построением повторяющихся элементов?

Ответ учащихся: Элементы орнаментов, народное творчество.

IV. Коллективное решение задач.

(Решение задач на слайдах.)

Рассмотрим один из способов исследования функции на периодичность.

При этом способе обходятся трудности, связанные с доказательством того, что тот или иной период является наименьшим, а также отпадает необходимость касаться вопросов об арифметических действиях над периодическими функциями и о периодичности сложной функции. Рассуждение опирается лишь на определение периодической функции и на такой факт: если Т – период функции, то и nT(n?0) – ее период.

Задача 1. Найдите наименьший положительный период функции f(x)=1+3{x+q>5}

Решение: Предположим, что Т-период данной функции. Тогда f(x+T)=f(x) для всех x € D(f), т.е.

1+3{x+T+0,25}=1+3{x+0,25}
{x+T+0,25}={x+0.25}

Положим x=-0,25 получим

{T}=0 <=> T=n, n € Z

Мы получили, что все периоды рассматриваемой функции (если они существуют) находятся среди целых чисел. Выберем среди этих чисел наименьшее положительное число. Это 1 . Проверим, не будет ли оно и на самом деле периодом 1 .

f(x+1) =3{x+1+0,25}+1

Так как {T+1}={T} при любом Т, то f(x+1)=3{(x+0.25)+1}+1=3{x+0,25}+1=f(x), т.е. 1 – период f. Так как 1 – наименьшее из всех целых положительных чисел, то T=1.

Задача 2. Показать, что функция f(x)=cos 2 (x) периодическая и найти её основной период.

Задача 3. Найдите основной период функции

f(x)=sin(1,5x)+5cos(0,75x)

Допустим Т-период функции, тогда для любого х справедливо соотношение

sin1,5(x+T)+5cos0,75(x+T)=sin(1,5x)+5cos(0,75x)

Если х=0, то

sin(1,5T)+5cos(0,75T)=sin0+5cos0

sin(1,5T)+5cos(0,75T)=5

Если х=-Т, то

sin0+5cos0=sin(-1,5Т)+5cos0,75(-Т)

5= – sin(1,5Т)+5cos(0,75Т)

sin(1,5Т)+5cos(0,75Т)=5

– sin(1,5Т)+5cos(0,75Т)=5

Сложив, получим:

10cos(0,75Т)=10

2π n, n € Z

Выберем из всех “подозрительных” на период чисел наименьшее положительное и проверим, является ли оно периодом для f. Это число

f(x+)=sin(1,5x+4π )+5cos(0,75x+2π )= sin(1,5x)+5cos(0,75x)=f(x)

Значит – основной период функции f.

Задача 4. Проверим является ли периодической функция f(x)=sin(x)

Пусть Т – период функции f. Тогда для любого х

sin|x+Т|=sin|x|

Если х=0, то sin|Т|=sin0, sin|Т|=0 Т=π n, n € Z.

Предположим. Что при некотором n число π n является периодом

рассматриваемой функции π n>0. Тогда sin|π n+x|=sin|x|

Отсюда вытекает, что n должно быть одновременно и четным и нечетным числом, а это невозможно. Поэтому данная функция не является периодической.

Задача 5. Проверить, является ли периодической функция

f(x)=

Пусть Т – период f, тогда

, отсюда sinT=0, Т=π n, n € Z. Допустим, что при некотором n число π n действительно является периодом данной функции. Тогда и число 2π n будет периодом

Так как числители равны, то равны и их знаменатели, поэтому

Значит, функция f не периодическая.

Работа в группах.

Задания для группы 1.

Задания для группы 2.

Проверьте является ли функция f периодической и найдите ее основной период (если существует).

f(x)=cos(2x)+2sin(2x)

Задания для группы 3.

По окончании работы группы презентуют свои решения.

VI. Подведение итогов урока.

Рефлексия.

Учитель выдаёт учащимся карточки с рисунками и предлагает закрасить часть первого рисунка в соответствии с тем, в каком объёме, как им кажется, они овладели способами исследования функции на периодичность, а в части второго рисунка – в соответствии со своим вкладом в работу на уроке.

VII. Домашнее задание

1). Проверьте, является ли функция f периодической и найдите её основной период (если он существует)

b). f(x)=x 2 -2x+4

c). f(x)=2tg(3x+5)

2). Функция y=f(x) имеет период Т=2 и f(x)=x 2 +2x при х € [-2; 0]. Найдите значение выражения -2f(-3)-4f(3,5)

Литература/

  1. Мордкович А.Г. Алгебра и начала анализа с углубленным изучением.
  2. Математика. Подготовка к ЕГЭ. Под ред. Лысенко Ф.Ф., Кулабухова С.Ю.
  3. Шереметьева Т.Г. , Тарасова Е.А. Алгебра и начала анализа для 10-11 классов.

УДК 517.17+517,51

ПЕРИОД СУММЫ ДВУХ ПЕРИОДИЧЕСКИХ ФУНКЦИЙ

А/О. Эвнин

В работе полностью решен вопрос, каким может быть основной период периодической функции, являющейся суммой двух периодических функций с известными основными периодами. Изучается также случай отсутствия основного периода у периодической суммы периодических функций.

Мы рассматриваем действительнозначные функции действительного переменного. В энциклопедическом издании в статье «Периодические функции» можно прочитать: «Сумма периодических функций с разными периодами является периодической только тогда, когда их периоды соизмеримы». Это утверждение справедливо для непрерывных функций1, но не имеет места в общем случае. Контрпример весьма общего вида был построен в . В данной статье мы выясняем, каким может быть основной период периодической функции, являющейся суммой двух периодических функций с известными основными периодами.

Предварительные сведения

Напомним, что функция / называется периодической, если для некоторого числа Т Ф О при любом х из области определения D(f) числа х + Т и х - Т принадлежат D(f) и выполняются равенства f(x + T) =f(x) =f(x ~ Т). При этом число Г называют периодом функции.

Наименьший положительный период функции (если, конечно, он существует) будем называть основным периодом. Известен следующий факт.

Теорема 1. Если у функции есть основной период То, то любой период функции имеет вид пТо, где п Ф 0 - целое число.

Числа Т\ и Т2 называют соизмеримыми, если существует такое число Т0, которое целое число раз «укладывается» и в Т\, и в Т2: Т\ = Т2 = п2Т0, щ,п2е Z. В противном случае числа Т\ и Т2 называют несоизмеримыми. Соизмеримость (несоизмеримость) периодов означает, таким образом, что их отношение есть число рациональное (иррациональное).

Из теоремы 1 следует, что у функции, имеющей основной период, любые два периода соизмеримы.

Классическим примером функции, не имеющей наименьшего периода, является функция Дирихле, равная 1 в рациональных точках, и нулю - в иррациональных. Любое рациональное число, отличное от нуля, является периодом функции Дирихле, а любое иррациональное число не является ее периодом. Как видим, и здесь любые два периода соизмеримы.

Приведем пример непостоянной периодической функции, имеющей несоизмеримые периоды.

Пусть функция /(х) в точках вида /и + ла/2, m, п е Z, равна 1, а в остальных точках равна

нулю. Среди периодов этой функции есть 1 и л

Период суммы функций с соизмеримыми периодами

Теорема 2. Пусть fug- периодические функции с основными периодами тТ0 и «То, где тип

Взаимно простые числа. Тогда основной период их суммы (если он существует), равен -

где к - натуральное число, взаимно простое с числом тп.

Доказательство. Пусть h = / + g. Очевидно, что число тпТ0 является периодом h. В силу

теоремы 1 основной период h имеет вид-где к- некоторое натуральное число. Предполо-

жим, что к не является взаимно простым с числом m, то есть к - dku m = dm\, где d> 1 - наи-

1 Красивое доказательство того, что сумма любого конечного числа непрерывных функций с попарно несоизмеримыми периодами непериодична, содержится в статье См. также .

больший общий делитель чисел т и к. Тогда период функции к равен

а функция f=h-g

имеет период mxnTо, не являющийся кратным ее основного периода mTQ. Получено противоречие с теоремой 1. Значит, к взаимно просто с т. Аналогично, взаимно простыми являются числа к и п. Таким образом, А: взаимно просто с тп. □

Теорема 3. Пусть т, п и к ~ попарно взаимно простые числа, а Т0 - положительное число. Тогда существуют такие периодические функции fug, что основные периоды f, g и (f + g) рае-

ны соответственно тТ$, nTQ и-

Доказательство. Доказательство теоремы будет конструктивным: мы просто построим соответствующий пример. Предварительно сформулируем следующий результат. Утверждение. Пусть т - взаимно простые числа. Тогда функции

fx - cos- + cos--- и f2= cos- m n m

cos- имеют основным периодом число 2ктп. п

Доказательство утверждения. Очевидно, что число 2птп является периодом обеих функций. Легко можно проверить, что этот период основной для функции Найдем ее точки максимума.

х = 2лМ, te Z.

Имеем = п!. Из взаимной простоты тип следует, что 5 кратно /г, т.е. я = I е Ъ. Значит, /х(х) = 2 о х = 2тстп1,1 е 2, а расстояние между соседними точками максимума функции /\ равно 2ктп, и положительный период/1 не может быть меньше числа 2 шпп.

Для функции^ применим рассуждения другого рода (которые подходят и для функции/ь но

менее элементарны). Как показывает теорема 1, основной период Г функции/2 имеет вид -,

где к- некоторое натуральное число, взаимно простое с тип. Число Гбудет и периодом функции

(2 ^ 2 хп г т т /2 + /2 = - -1 cos

все периоды которой имеют вид 2пп1. Итак,

2nnl, т.е. т = kl. Так как т и к взаимно про-

сты, отсюда следует, что к= 1.

Теперь для доказательства теоремы 3 можно построить искомый пример. Пример. Пусть т, п и к - попарно взаимно простые числа и хотя бы одно из чисел п или к отлично от 1. Тогда пф к ив силу доказанного утверждения функции

/ (х) = cos--- + cos- т к

И g(x) = cos-cos - п к

имеют основные периоды 2 лтк и 2 тк соответственно, а у их суммы

к(х) = f(x) + = cos- + cos-

основной период равен 2 ттп.

Если же п = к = 1, то подойдет пара функций

f{x)-2 cos- + COS X и g(x) - COS X. m

Их основные периоды, а также период функции к(х) - 2 равны соответственно 2лм, 2/ги 2тип.

как легко проверить.

Математика

Обозначим Т = 2лк. Для произвольных попарно взаимно простых чисел тп, п и к указаны функции/и £ такие, что основные периоды функций/, g и/ + g равны соответственно тТ, пТ и

Условию теоремы удовлетворяют функции / - л;

Период суммы функций с несоизмеримыми периодами

Следующее утверждение почти очевидно.

Теорема 4. Пусть fug- периодические функции с несоизмеримыми основными периодами Т} и Т2, а сумма этих функций h = f + g периодична и имеет основной период Т. Тогда число Т несоизмеримо ни с Т], ни с Т2.

Доказательство. С одной стороны, если числа ТнТ} соизмеримы, то функция g = h-f имеет период, соизмеримый с Г]. С другой стороны, в силу теоремы 1 любой период функции g кратен числу Т2. Получаем противоречие с несоизмеримостью чисел Т\ и Т2. Несоизмеримость чисел Т и Т2 доказывается аналогично, d

Замечательным, и даже в некотором роде удивительным, является тот факт, что справедливо и утверждение, обратное к теореме 4. Широко распространено заблуждение о том, что сумма двух периодических функций с несоизмеримыми периодами не может быть функцией периодической. На самом же деле это не так. Более того, период суммы может быть любым положительным числом, удовлетворяющим утверждению теоремы 4.

Теорема 5. Пусть Т\, Т2иТ~ попарно несоизмеримые положительные числа. Тогда существуют такие периодические функции fug, что их сумма h =/+ g периодична, а основные периоды функцииf guhравны соответственно Th Т2 и Т.

Доказательство. Доказательство вновь будет конструктивным. Наши построения будут существенно зависеть от того, представимо или не представимо число Т в виде рациональной комбинации Т = аТ\ + рТ2 (а и Р - рациональные числа) периодов Т\ и Т2.

I. Т не является рациональной комбинацией Тг и J2-

Пусть А = {mT\ + пТ2 + kT\m,n, k е Z} - множество целых линейных комбинаций чисел Гь Т2 и Т. Отметим сразу, что если число представимо в виде пгТ\ + пТ2 + кТ, то такое представление единственно. Действительно, если тхТ\ + п\Тг + к\Т- m2Tx + п2Т2 + к2Т9 то

(к} - к2)Т- (от2 - т\)Т] + (п2 - щ)Тъ и при к\ * к2 получаем, что Т рационально выражается через Т] и Т2. Значит, к\ = к2. Теперь из несоизмеримости чисел Т\ и Т2 непосредственно получаются равенства т\ = т2 и щ = п2.

Важным является тот легко проверяемый факт, что множества А и дополнение к нему А замкнуты относительно прибавления чисел из А: если х е А и у е А, то х + у е А; если х е А и у е А, тох + у е А.

Положим, что во всех точках множества А функции/и g равны нулю, а на множестве А зададим эти функции следующим образом:

f(mTi + пТ2 + кТ) = пТ2 + кТ g(mT1 + пТ2 + кТ) - гпТ\ - кТ.

Поскольку, как было показано, по числу х е А коэффициенты т,пик линейной комбинации периодов Гь Т2 и Г восстанавливаются однозначно, указанные задания функций/и g корректны.

Функция h =/ + g на множестве А равна нулю, а в точках множества А равна

h(mT\ + пТ2 + кТ) - тТ\ + пТ2.

Непосредственной подстановкой легко убедиться, что число Т\ - период функции f число Т2 - период g, а Т~ период h. Покажем, что эти периоды - основные.

Сначала отметим, что любой период функции /принадлежит множеству А. Действительно,

если 0 фх в А,у е А, т ох + у е А и f(x + у) = 0 *f(x). Значит, у е А - не период функции /

Пусть теперь не равные друг другу числах\, х2 принадлежат^ и f(x 1) ~f(x2). Из определения функции / отсюда получаем, что х\ - х2 = 1ТЬ где I- некоторое ненулевое целое число. Стало быть, любой период функции/кратен Т\. Таким образом, Тх - действительно основной период/

Точно так же проверяются утверждения относительно Т2 и Т.

Замечание. В книге на с. 172-173 приводится другая общая конструкция для случая I.

II. Т- рациональная комбинация Т\ и Т2.

Представим рациональную комбинацию периодов Т\ и Т2 в виде Г = - (кхТх + к2Т2), где кх и

к2 ™ взаимно простые целые числа, к{Г\ + к2Т2 > 0, а/? и д - натуральные числа. Введем в рассмотри, лeZ>.

рение множество В----

Положим, что во всех точках множества В функцииfиg равны нулю, а на множестве В зададим эти функции следующим образом:

^ тТ\ + пТ2 Л Я

^ mTx + пТ2 Л

Здесь, как обычно, [х] и {х} обозначают соответственно целую и дробную часть числах. Функция к =/+ д на множестве В равна нулю, а в точках множества В равна

fmTx +пТ: л Ч

Непосредственной подстановкой несложно проверить, что число Тх - период функции/, число Т2 - период g, а Т- период h. Покажем, что эти периоды - основные.

Любой период функции / принадлежит множеству В. Действительно, если 0 * х е В, у е В, то f(x) Ф 0, j{x + у) = 0 */(*)■ Значит, у е В _ Не период функции/

Итак, всякий период функции / имеет вид Ту =

Где 5i и 52 - целые числа. Пусть

х =-7] 4- -Г2, х е 5. Если я = 0, то /(я) - рациональное число. Теперь из рациональности числа /(х + 7}) вытекает равенство -I - I - 0. Значит, имеем равенство 52 = Хр, где X - некоторое целое

число. Соотношение/(х + 7}) = /(х) принимает вид

^ П + I + I ш +

Данное равенство должно выполняться при всех целых тип. При т-п~ 0 правая часть (1) рав-

на нулю. Поскольку дробные части неотрицательны, получаем отсюда, что -<0, а при

т = п = д - ] сумма дробных частей в правой части равенства (1) не меньше суммы дробных час-X

тей слева. Значит, - >0. Таким образом, X = 0 и 52 = 0. Поэтому период функции / имеет вид

а равенство (1) переходит в

п\ | и 52 - целые числа. Из соотношений

й(0) = 0 = й(ГА) =

получаем, что числа 51 и ^ должны быть кратны р, т.е. при некоторых целых Лх и Л2 имеем 51 = Л\р, Э2 = Л2р. Тогда соотношение (3) можно переписать в виде

Из равенства Л2кх = к2Л\ и взаимной простоты чисел к\ и к2, вытекает, что Л2 делится на к2. Отсюда

для некоторого целого числа t справедливы равенства Л2 = k2t и Лх ~ kxt, т.е. Th ~-{кхТх + к2Т2).

Показано, что любой период функции h кратен периоду Т = - (к{Гх + к2Т2)9 который, таким обра-

зом, является основным. □

Отсутствие основного периода

Теорема 6. Пусть Тх и Т2~- произвольные положительные числа. Тогда существуют такие периодические функции fug, что их основные периоды равны соответственно Т\ и Т2, а их сумма h=f+g периодична, но не имеет основного периода.

Доказательство. Рассмотрим два возможных случая.

I. Периоды Тх и Т2 несоизмеримы.

Пусть A = + пТ2 +kT\ . Как и выше, легко показать, что если число

представимо в виде тТх + пТ2 + кТ, то такое представление единственно.

Положим, что во всех точках множества А функции / и g равны нулю, а на множестве А зададим эти функции следующим образом:

/от; + пТ2 + кТ) = пТ2 + кТ, g(mTx + пТ2 + кТ) = тТх - кТ.

Несложно убедиться в том, что число Тх - основной период функции / , число Т2 - основной период g , и при любом рациональном к число кТ - период функции h - f + g, у которой, таким образом, нет наименьшего периода.

II. Периоды Тх и Т2 соизмеримы.

Пусть Тх =тТ0,Т2 = пТ0, где Т0 > О, m и п - натуральные числа. Введем в рассмотрение множество Я = + .

Положим, что во всех точках множества В функции fug равны нулю, а на множестве В зададим эти функции так:

/((/ + ЩТ0) = Щ + Jit, g((/ + 4lk)T0) - Щ - 42к.

Функция h ~ / + g на множестве В равна нулю, а в точках множества В равна

Нетрудно проверить, что число 7j = mTQ - основной период функции / , число Т2 ~ пТ0 - основной период g, в то время как среди периодов функции h~ f + g есть все числа вида л/2кТ0, где к - произвольное рациональное число. □

В основе конструкций, доказывающих теорему 6, лежит несоизмеримость периодов функции h~ / + g с периодами функций / и g . Приведем в заключение пример таких функций fug, что все периоды функций /, g и / + g соизмеримы между собой, но у / и g есть основные периоды, а у f + g - нет.

Пусть m - некоторое фиксированное натуральное число, М - множество несократимых нецелых дробей, числители которых кратны m . Положим

1, если хеМ; 1

еслихе mZ;

EcnuxeZXmZ; 2

О в остальных случаях; 1, если хеМU

~,еслихе2 2

[О в противном случае.

Легко видеть, что основные периоды функций fug равны соответственно m и 1, в то время как сумма / + g имеет периодом любое число вида m/n, где п - произвольное натуральное число, взаимно простое с m .

Литература

1. Математический энциклопедический словарь/Гл. ред. Ю.В. Прохоров - М.: Сов. энциклопедия, 1988.

2. Микаэлян Л.В., Седракян Н.М. О периодичности суммы периодических функций// Математическое образование. - 2000. - № 2(13). - С. 29-33.

3. Геренштейн A.B., Эвнин А.Ю. О сумме периодических функций// Математика в школе. -2002. - № 1. - С. 68-72.

4. Ивлев Б.М. и др. Сборник задач по алгебре и началам анализа для 9 и 10 кл. - М.: Просвещение, 1978.

Приложение №7

Муниципальное общеобразовательное учреждение

средняя общеобразовательная школа № 3

Учитель

Короткова

Ася Эдиковна

г. Курганинск

2008г.

С О Д Е Р Ж А Н И Е

Введение ……………………………………………… 2-3

Периодические функции и их свойства ……………. 4-6

Задачи ………………………………………………… 7-14

Введение

Отметим, что у задач на периодичность в учебно-методической литературе нелёгкая судьба. Объясняется это странной традицией-допускать те или иные небрежности в определении периодических функций, которые приводят к к спорным решениям и провоцируют инциденты на экзаменах.

Например, в книге «Толковый словарь математических терминов» - М, 1965г., даётся следующее определение: «периодическая функция – функция

y = f(х), для которой существует число t > 0, что для всех х и х+t из области определения f(x + t) = f(х).

Приведём контр-пример, показывающий некорректность этого определения. По этому определению периодической с периодом t = 2π будет функция

с(x) = Cos(√x) 2 – Cos(√4π - x) 2 с ограниченной областью определения , что противоречит общепринятой точке зрения о периодических функциях.

Аналогичные проблемы возникают и во многих новейших альтернативных учебниках для школы.

В учебнике А.Н.Колмогорова приводится следующее определение: «Говоря о периодичности функции f, полагают, что имеется такое число Т ≠ 0, что область определения Д (f) вместе с каждой точкой х содержит и точки, получающиеся из х параллельным переносом вдоль оси Ох (вправо и влево) на расстояние Т. Функцию f называют периодической с периодом Т ≠ 0, если для любого из области определения значения этой функции в точках х, х – Т, х + Т равны, т.е. f (х + Т) = f (х) = f (х – Т)». Далее в учебнике написано: «Поскольку синус и косинус определена на всей числовой прямой и Sin (х + 2π) = Sin х,

Cos (х + 2π) = Cos х для любого х, синус и косинус – период функции с периодом 2π».

В этом примере почему-то не проверяется требуемое в определении условия что

Sin (х – 2π) = Sin х. В чём дело? Дело в том, что это условие в определении лишнее. Действительно, ведь если Т > 0 – период функции f(х), то Т тоже будет являться периодом этой функции.

Хочу привести ещё одно определение из учебника М.И.Башмакова «Алгебра и начала анализа 10-11 кл.» «Функция у = f(х) называется периодической, если существует такое число Т ≠ 0, что равенство

f (х + Т) = f(х) выполняется тождественно при всех значениях х».

В приведённом определении ничего не говорится об области определения функции, хотя имеется в виду х из области определения, не любые действительные х. По такому определению периодической может быть функция у = Sin (√х) 2 , определенная только при х ≥ 0, что неверно.

В едином государственном экзамене имеются задачи на периодичность. В одном научно- периодическом журнале в качестве тренинга по разделу С ЕГЭ было приведено решение задачи: « является ли функция у (х) = Sin 2 (2+х) – 2 Sin 2 Sin х Cos (2+х) периодической?»

В решении проявляется, что у (х – π) = у (х) в ответе – лишняя запись

«Т = π» (ведь вопрос о нахождении наименьшего положительного периода не ставиться). Так ли необходимо для решения этой задачи проводить непростое тригонометрическое образование. Ведь здесь можно ориентироваться на понятие периодичности, как на ключевое в условии задачи.

Решение.

f 1 (x) = Sin х – периодическая функция с периодом Т = 2π

f 2 (x) = Cos х – периодическая функция с периодом Т = 2π, тогда 2π – период и для функций f 3 (x) = Sin (2 + х) и f 4 (x) = Cos (2 + х), (это следует из определения периодичности)

f 5 (x) = - 2 Sin 2 = Const, её периодом является любое число, в том числе и 2π.

Т.к. сумма и произведение периодических функций с общим периодом Т, также является Т-периодичной, то данная функция периодичная.

Надеюсь, что приведённый в этой работе материал, поможет при подготовке к единому государственному экзамену в решении задач на периодичность.

Периодические функции и их свойства

О п р е д е л е н и е: функция f(t) называется периодической, если для любого t из области определения этой функции D f существует число ω ≠ 0, такое, что:

1) числа (t ± ω) є D f ;

2) f (t + ω) = f(t).

1. Если число ω = период функции f (t), то число kω, где k = ±1, ±2, ±3, … тоже являются периодами функции f(t).

П р и м е р. f (t) = Sin t. Число Т = 2π – наименьший положительный период данной функции. Пусть Т 1 = 4π. Покажем, что Т 1 тоже является периодом данной функции.

F (t + 4π) = f (t + 2π + 2π) = Sin (t + 2π) = Sin t.

Значит, Т 1 – период функции f (t) = Sin t.

2. Если функция f(t) – ω – периодическая функция, то функции f (аt), где а є R, и f (t + с), где с – произвольная константа, тоже являются периодическими.

Найдём период функции f (аt).

f(аt) = f(аt + ω) = f (а(t + ω/а)), т.е. f (аt) = f (а(t + ω/а).

Следовательно, период функции f(аt) – ω 1 = ω/а.

П р и м е р 1. Найти период функции у = Sin t/2.

П р и м е р 2. Найти период функции у = Sin (t + π/3).

Пусть f(t) = Sin t; у 0 = Sin (t 0 + π/3).

Тогда функция f(t) = Sin t примет тоже значение у 0 при t = t 0 + π/3.

Т.е. все значения, которые принимает функция у принимает и функция f(t). Если t толковать как время, то каждое значение у 0 функцией у = Sin (t + π/3) принимается на π/3 единиц времени раньше, чем функцией f(t) «сдвигом» влево на π/3. Очевидно, период функции от этого не изменится т.е. Т у = Т 1 .

3. Если F(x) – некоторая функция, а f(t) – периодическая функция, причём такая, что f(t) принадлежит области определения функции F(x) – D F , тогда функция F(f (t)) – периодическая функция.

Пусть F(f (t)) = φ.

Φ (t + ω) = F(f (t + ω)) = F(f (t)) = φ (t) для любого t є D f .

П р и м е р. Исследовать на периодичность функцию: F(x) = ℓ sin x .

Область определения данной функции D f совпадает с множеством действительных чисел R. f (х) = Sin х.

Множество значений этой функции – [-1; 1]. Т.к. отрезок [-1; 1] принадлежит D f , то функция F(x) периодическая.

F(x+2π) = ℓ sin (x + 2π) = ℓ sin x = F(x).

2 π – период данной функции.

4. Если функции f 1 (t) и f 2 (t) периодические соответственно с периодами ω 1 и ω 2 и ω 1 /ω 2 = r, где r – рациональное число, то функции

С 1 f 1 (t) + С 2 f 2 (t) и f 1 (t) · f 2 (t) являются периодическими (С 1 и С 2 – константы).

Замечание: 1) Если r = ω 1 /ω 2 = p/q, т.к. r – рациональное число, тогда

ω 1 q = ω 2 p = ω, где ω – наименьшее общие кратное чисел ω 1 и ω 2 (НОК).

Рассмотрим функцию С 1 f 1 (t) + С 2 f 2 (t).

Действительно, ω = НОК (ω 1 , ω 2 ) - период данной функции

С 1 f 1 (t) + С 2 f 2 (t) = С 1 f 1 (t+ ω 1 q) + С 2 f 2 (t+ ω 2 p) + С 1 f 1 (t) + С 2 f 2 (t) .

2) ω – период функции f 1 (t) · f 2 (t), т.к.

f 1 (t + ω) · f 2 (t + ω =f 1 (t +ω 1 q) · f 2 (t =ω 2 p) = f 1 (t) · f 2 (t).

О п р е д е л е н и е: Пусть f 1 (t) и f (t) – периодические функции с периодами соответственно ω 1 и ω 2 , тогда два периода называются соизмеримыми, если ω 1 /ω 2 = r – рациональное число.

3) Если периоды ω 1 и ω 2 не соизмеримы, то функции f 1 (t) + f 2 (t) и

f 1 (t) · f 2 (t) не являются периодическими. Т.е., если f 1 (t) и f 2 (t)отличны от константы, периодичны, непрерывны, их периоды не соизмеримы, то f 1 (t) + f 2 (t), f 1 (t) · f 2 (t) не являются периодическими.

4) Пусть f(t) = С, где С – произвольная константа. Данная функция периодичная. Её периодом является любое рациональное число, значит, наименьшего положительного периода она не имеет.

5) Утверждение верно и для большего числа функций.

П р и м е р 1. Исследовать на периодичность функцию

F(х) = Sin х + Cos х.

Решение. Пусть f 1 (х) = Sin х, тогда ω 1 = 2πk, где k є Z.

Т 1 = 2π – наименьший положительный период.

f 2 (х) = Cos х, Т 2 = 2π.

Отношение Т 1 /Т 2 = 2π/2π = 1 – рациональное число, т.е. периоды функций f 1 (х) и f 2 (х) соизмеримы. Значит, данная функция периодична. Найдём её период. По определению периодической функции имеем

Sin (х + Т) + Cos (х + Т) = Sin х + Cos х,

Sin (х + Т) - Sin х = Cos х - Cos (х + Т),

2 Cos 2х+ π/2 · Sin Т/2 = 2 Sin 2х+Т/2 · Sin Т/2,

Sin Т/2 (Cos Т+2х/2 - Sin Т+2х/2) =0,

√2 Sin Т/2 Sin (π/4 – Т+2х/2) = 0, следовательно,

Sin Т/2 = 0, тогда Т = 2πk.

Т.к. (х ± 2πk) є D f , где f(х) = Sin х + Cos х,

f(х + t) = f(х), то функция f(х) – периодическая с наименьшим положительным периодом 2π.

П р и м е р 2. Является ли периодическая функция f(х) = Cos 2х · Sin х, каков её период?

Решение. Пусть f 1 (х) = Cos 2х, тогда Т 1 = 2π : 2 = π (см. 2)

Пусть f 2 (х) = Sin х, тогда Т 2 = 2π. Т.к. π/2π = ½ - рациональное число, то данная функция является периодической. Её период Т = НОК

(π, 2π) = 2π.

Итак, данная функция периодическая с периодом 2π.

5. Пусть функция f(t), тождественно не равная константе, непрерывна и периодична, тогда она имеет наименьший положительный период ω 0 , всякий другой период её ω имеет вид: ω = kω 0 , гдк k є Z.

Замечание: 1) В этом свойстве очень важны два условия:

f(t) непрерывна, f(t) ≠ С, где С – константа.

2) Обратное утверждение не верно. Т.е., если все периоды соизмеримы, то отсюда не следует, что существует наименьший положительный период. Т.е. у периодической функции наименьшего положительного периода может и не быть.

П р и м е р 1. f(t) = С, периодическая. Её период – любое действительное число, наименьшего периода нет.

П р и м е р 2. Функция Дирихле:

D(х) =

Любое рациональное число является её периодом, наименьшего положительного периода нет.

6. Если f(t) – непрерывная периодическая функция и ω 0 – её наименьший положительный период, то функция f(αt + β) имеет наименьший положительный период ω 0 /‌‌/α/. Это утверждение следует из п. 2.

П р и м е р 1. Найти период функции у = Sin (2х – 5).

Решение. у = Sin (2х – 5) = Sin (2(х – 5/2)).

График функции у получается из графика функции Sin х сначала «сжатием» в два раза, затем «сдвигом» вправо на 2,5. «Сдвиг на периодичность не влияет, Т = π – период данной функции.

Легко получить период данной функции, используя свойство п. 6:

Т = 2π/2 = π.

7. Если f(t) – ω – периодическая функция, и она имеет непрерывную производную f"(t), то f"(t) тоже периодическая функция, Т = ω

П р и м е р 1. f(t) = Sin t, Т = 2πk. Её производная f"(t) = Cos t

F"(t) = Cos t, Т = 2πk, k є Z.

П р и м е р 2. f(t) = Cos t, Т = 2πk. Её производная

F"(t) = - Sin t, Т = 2πk, k є Z.

П р и м е р 3. f(t) =tg t, её период Т = πk.

F"(t) = 1/ Cos 2 t – тоже периодическая по свойству п. 7 и имеет период Т = πk. Её наименьший положительный период Т = π.

З А Д А Ч И.

№ 1

Является ли функция f(t) = Sin t + Sin πt периодической?

Решение. Для сравнения решим эту задачу двумя способами.

Во-первых, по определению периодической функции. Допустим, что f(t) – периодическая, тогда для любого t є D f имеем:

Sin (t + Т) + Sin π (t + Т) = Sin t + Sin πt,

Sin (t + Т) - Sin t = Sin πt - Sin π (t + Т),

2 Cos 2t + Т/2 Sin Т/2 = -2 Cos 2 πt + πt/2 Sin πt/2.

Т.к. это верно для любого t є D f , то в частности и для t 0 , при котором левая часть последнего равенства обращается в ноль.

Тогда имеем: 1) Cos 2t 0 +Т/2 Sin Т/2 = 0. Разрешим относительно Т.

Sin Т/2 = 0 при Т = 2 πk, где k є Z.

2) Cos 2πt 0 + πt 0 /2 Sin πТ/2 = 0. Разрешим относительно Т.

Sin πТ/2 = 0, тогда Т = 2πn/ π = 2n, n≠0, где n є Z.

Т.к. имеем тождество, то 2 πk = 2n, π = 2n/2 k = n/ k, чего быть не может, т.к. π – иррациональное число, а n/ k – рациональное. Т.е., наше предположение что функция f(t) – периодическая было не верным.

Во – вторых, решение гораздо упрощается, если воспользоваться приведёнными выше свойствами периодических функций:

Пусть f 1 (t) = Sin t, Т 1 = 2 π; f 2 (t) = Sin πt, Т 2 - 2π/π = 2. Тогда, Т 1 /Т 2 = 2π/2 = π –иррациональное число, т.е. периоды Т 1 , Т 2 не соизмеримы, значит, f(t) не является периодической.

Ответ: нет.

№ 2

Показать, что если α – иррациональное число, то функция

F(t) = Cos t + Cos αt

не является периодической.

Решение. Пусть f 1 (t) = Cos t, f 2 (t) = Cos αt.

Тогда их периоды соответственно Т 1 = 2π, Т 2 = 2π//α/ - наименьшие положительные периоды. Найдём, Т 1 /Т 2 = 2π/α//2π = /α/ - иррациональное число. Значит Т 1 и Т 2 несоизмеримы, а функция

f(t) не является периодической.

№ 3

Найти наименьший положительный период функции f(t) = Sin 5t.

Решение. По свойству п.2 имеем:

f(t) – периодическая; Т = 2π/5.

Ответ: 2π/5.

№ 4

Является ли периодической функция F(х) = arccos x + arcsin x?

Решение. Рассмотрим данную функцию

F(х) = arccos x + arcsin x = π - arcsin x + arcsin x = π,

т.е. F(х) – периодическая функция (см. свойство п. 5, пример 1.).

Ответ: да.

№ 5

Является ли периодической функция

F(х) = Sin 2х + Cos 4х + 5 ?

решение. Пусть f 1 (х) = Sin 2х, тогда Т 1 = π;

F 2 (х) = Cos 4х, тогда Т 2 = 2π/4 = π/2;

F 3 (х) = 5, Т 3 – любое действительное число, в частности Т 3 можем предположить равным Т 1 или Т 2 . Тогда период данной функции Т = НОК (π, π/2) = π. Т.е., f(х) – периодическая с периодом Т = π.

Ответ: да.

№ 6

Является ли периодической функция f(х) = х – Е(х), где Е(х) – функция, ставящая аргументу х в соответствие наименьшее целое число, не превосходящее данное.

Решение. Часто функцию f(х) обозначают {x} – дробная часть числа х, т.е.

F(х) = {x} = х – Е(х).

Пусть f(х) – периодическая функция, т.е. существует такое число Т >0, что х – Е(х) = х + Т – Е(х + Т). Распишем это равенство

{x} + Е(х) – Е(х) = {x + T} + E(х + Т) – Е(х + Т),

{x} + {x + T} – верно для любого х из области определения D f, при условии, что Т ≠ 0 и Т є Z. Наименьшее положительное из них Т = 1, т.е. Т =1 такое, что

Х + Т – Е(х + Т) = х – Е(х),

Причём, (х ± Тk) є D f , где k є Z.

Ответ: данная функция периодична.

№ 7

Является ли периодичной функция f(х) = Sin х 2 .

Решение. Допустим, что f(х) = Sin х 2 периодическая функция. Тогда по определению периодической функции существует число Т ≠ 0 такое, что: Sin х 2 = Sin (х + Т) 2 для любого х є D f .

Sin х 2 = Sin (х + Т) 2 = 0,

2 Cos х 2 + (х+Т) 2 /2 Sin х 2 -(х+Т) 2 /2 = 0, тогда

Cos х 2 + (х+Т) 2 /2 = 0 или Sin х 2 -(х+Т) 2 /2 = 0.

Рассмотрим первое уравнение:

Cos х 2 + (х+Т) 2 /2 = 0,

Х 2 + (х+Т) 2 /2 = π(1+2 k)/2 (k є Z),

Т = √ π(1+2 k) – х 2 – х. (1)

Рассмотрим второе уравнение:

Sin х 2 -(х+Т) 2 /2 = 0,

Х + Т = √- 2πk + х 2 ,

Т = √х 2 - 2πk – х. (2)

Из выражений (1) и (2) видно, что найденные значения Т зависит от х, т.е. не существует такого Т>0, что

Sin х 2 = Sin (х+Т) 2

Для любого х из области определения этой функции. f(х) – не периодична.

Ответ: нет

№ 8

Исследовать на периодичность функцию f(х) = Cos 2 х.

Решение. Представим f(х) по формуле косинуса двойного угла

F(х) = 1/2 + 1/2 Cos 2х.

Пусть f 1 (х) = ½ , тогда Т 1 – это может быть любое действительное число; f 2 (х) = ½ Cos 2х – периодическая функция, т.к. произведение двух периодических функций, имеющих общий период Т 2 = π. Тогда наименьший положительный период данной функции

Т = НОК (Т 1 , Т 2 ) =π.

Итак, функция f(х) = Cos 2 х – π – периодична.

Ответ: π – периодична.

№ 9

Может ли областью определения периодической функции быть:

А) полупрямая [а, ∞),

Б) отрезок ?

Решение. Нет, т.к.

А) по определению периодической функции, если х є D f, то х ± ω тоже

Должны принадлежать области определения функции. Пусть х = а, то

Х 1 = (а – ω) є [а, ∞);

Б) пусть х = 1, то х 1 = (1 + Т) є .

№ 10

Может ли периодическая функция быть:

А) строго монотонной;

Б) чётной;

В) не чётной?

Решение. а) Пусть f(х) – периодическая функция, т.е. существует Т≠0 такое, что для любого х из области определения функций D f чтсла

(х ±Т) є D f и f (х±Т) = f(х).

Зафиксируем любое х 0 є D f , т.к. f(х) – периодическая, то (х 0 +Т) є D f и f(х 0 ) = f(х 0 +Т).

Допустим, что f(х) строго монотонна и на всей области определения D f , например, возрастает. Тогда по определению возрастающей функции для любых х 1 и х 2 из области определения D f из неравенства х 1 2 следует, что f(х 1 ) 2 ). Вчастности, из условия х 0 0 + Т, следует, что

F(х 0 ) 0 +Т), что противоречит условию.

Значит, периодическая функция не может быть строго монотонной.

б) Да, периодическая функция может быть чётной. Приведём несколько примеров.

F(х) = Cos х, Cos х = Cos (-х), Т = 2π, f(х) – чётная периодическая функция.

0, если х – рациональное число;

D(х) =

1, если х – иррациональное число.

D(х) = D(-х), область определения функции D(х) симметрична.

Функция Дирехле D(х) является чётной периодической функцией.

f(х) = {x},

f(-х) = -х – Е(-х) = {-x} ≠ {x}.

Данная функция не является чётной.

в) Периодическая функция может быть нечётной.

f(х) = Sin х, f(-х) = Sin (-х) = - Sin = - f(х)

f(х) – нечетная периодическая функция.

f(х) – Sin х · Cos х, f(-х) = Sin (-х) Cos (-х) = - Sin х Cos х = - f(х) ,

f(х) – нечётная и периодическая.

f(х) = ℓ Sin x , f(-х) = ℓ Sin(- x) = ℓ -Sin x ≠ - f(х),

f(х) не является нечётной.

f(х) = tg x – нечётная периодическая функция.

Ответ: нет; да; да.

№ 11

Сколько нулей может иметь периодическая функция на:

1) ; 2) на всей числовой оси, если период функции равен Т?

Решение: 1. а) На отрезке [а, б] периодическая функция может не иметь нулей, например, f(х) = С, С≠0; f(х) = Cos х + 2.

б) На отрезке [а, б] периодическая функция может иметь бесконечное множество нулей, например, функция Дирехле

0, если х – рациональное число,

D(х) =

1, если х – иррациональное число.

в) На отрезке [а, б] периодическая функция может иметь конечное число нулей. Найдём это число.

Пусть Т – период функции. Обозначим

Х 0 = {min x є{a,б}, таких что f(х) = 0}.

Тогда число нулей на отрезке [а, б]: N = 1 + Е (в-х 0 /Т).

Пример 1. х є [-2, 7π/2], f(х) = Cos 2 х – периодическая функция с периодом Т = π; х 0 = -π/2; тогда число нулей функции f(х) на данном отрезке

N = 1 + Е (7π/2 – (-π/2)/2) = 1 + Е (8π/2π) = 5.

Пример 2. f(х) = х – Е(х), х є [-2; 8,5]. f(х) – периодическая функция, Т + 1,

х 0 = -2. Тогда число нулей функции f(х) на данном отрезке

N = 1 + Е (8,5 – (-2)/1) = 1 + Е (10,5/1) = 1 + 10 = 11.

Пример 3. f(х) = Cos х, х є [-3π; π], Т 0 = 2π, х 0 = - 5π/2.

Тогда число нулей данной функции на заданном отрезке

N = 1 + Е (π – (-5π/2)/2π) = 1 + Е (7π/2π) = 1 + 3 = 4.

2. а) Бесконечное число нулей, т.к. х 0 є D f и f(х 0 ) = 0, то для всех чисел

Х 0 +Тk, где k є Z, f(х 0 ± Тk) = f(х 0 ) =0, а точек вида х 0 ± Тk бесконечное множество;

б) не иметь нулей; если f(х) – периодическая и для любых

х є D f функция f(х) >0 или f(х)

F(х) = Sin х +3,6; f(х) = С, С ≠ 0;

F(х) = Sin х – 8 + Cos х;

F(х) = Sin х Cos х + 5.

№ 12

Может ли сумма не периодических функций быть периодической?

Решение. Да, может. Например:

  1. f 1 (х) = х – непериодическая, f 2 (х) = Е(х) – непериодическая

F(х) = f 1 (х) – f 2 (х) = х – Е(х) – периодическая.

  1. f 1 (х) = х – непериодическая, f(х) = Sin х + х – непериодическая

F(х) = f 2 (х) – f 1 (х) = Sin х – периодическая.

Ответ: да.

№ 13

Функция f(х) и φ(х) периодические с периодами Т 1 и Т 2 соответственно. Всегда ли их произведение есть периодическая функция?

Решение. Нет, только в случае, когда Т 1 и Т 2 – соизмеримы. Например,

F(х) = Sin х · Sin πх, Т 1 = 2π, Т 2 = 2; тогда Т 1 /Т 2 = 2π/2 = π – иррациональное число, значит, f(х) не является периодической.

f(х) = {х} Cos х = (х – Е(х)) Cos х. Пусть f 1 (х) = х – Е(х), Т 1 = 1;

f 2 (х) = Cos (х), Т 2 = 2π. Т 2 /Т 1 = 2π/1 = 2π, значит f(х) не является периодической.

Ответ: Нет.

Задачи для самостоятельного решения

Какие из функций являются периодическими, найти период?

1. f(х) = Sin 2х, 10. f(х) = Sin х/2 + tg х,

2. f(х) = Cos х/2, 11. f(х) = Sin 3х + Cos 4х,

3. f(х) = tg 3х, 12. f(х) = Sin 2 х+1,

4. f(х) = Cos (1 – 2х), 13. f(х) = tg х + ctg√2х,

5. f(х) = Sin х Cos х, 14. f(х) = Sin πх + Cos х,

6. f(х) = ctg х/3, 15. f(х) = х 2 – Е(х 2 ),

7. f(х) = Sin (3х – π/4), 16. f(х) = (х – Е(х)) 2 ,

8. f(х) = Sin 4 х + Cos 4 х, 17. f(х) = 2 х – Е(х) ,

9. f(х) = Sin 2 х, 18. f(х) = х – n + 1, если n ≤ х≤ n + 1, n = 0, 1, 2…

№ 14

Пусть f(х) – Т – периодическая функция. Какие из функций периодические (найти Т)?

  1. φ(х) = f(х + λ) – периодическая, т.к. «сдвиг» вдоль оси Ох на ω не влияет; её период ω = Т.
  2. φ(х) = а f(х + λ) + в – периодическая функция с периодом ω = Т.
  3. φ(х) = f(kх) – периодическая функция с периодом ω = Т/k.
  4. φ(х) = f(ах + в) - периодическая функция с периодом ω = Т/а.
  5. φ(х) = f(√х) не является периодической, т.к. её область определения D φ = {x/x ≥ 0}, а у периодической функции область определения полуосью быть не может.
  6. φ(х) = (f(х) + 1/(f(х) – 1) – периодическая функция, т.к.

φ(х +Т) = f(х+Т) + 1/f(х +Т) – 1 = φ(х), ω = Т.

  1. φ(х) = а f 2 (х) + в f(х) + с.

Пусть φ 1 (х) = а f 2 (х) – периодическая, ω 1 = т/2;

φ 2 (х) = в f(х) – периодическая, ω 2 = Т/Т = Т;

φ 3 (х) = с – периодическая, ω 3 – любое число;

тогда ω = НОК(Т/2; Т) = Т, φ(х) – периодическая.

Иначе, т.к. областью определения данной функции является вся числовая прямая, то множество значений функции f – Е f є D φ , значит, функция

φ(х) – периодическая и ω = Т.

  1. φ(х) = √φ(х), f(х) ≥ 0.

φ(х) – периодическая с периодом ω = Т, т.к. для любого х функция f(х) принимает значения f(х) ≥ 0, т.е. её множество значений Е f є D φ , где

D φ – область определения функции φ(z) = √z.

№ 15

Является ли функция f(х) = х 2 периодической?

Решение. Рассмотрим х ≥ 0, тогда для f(х) существует обратная функция √х, значит, на этом интервале f(х) – монотонная функция, тогда она не может быть периодической (см. № 10).

№ 16

Дан многочлен P(х) = а 0 + а 1 х + а 2 х + …а n х.

Является ли Р(х) периодической функцией?

Решение. 1. Если тождество равно константе, то P(х) – периодическая функция, т.е. если а i = 0, где i ≥ 1.

2.Пусть P(х) ≠ с, где с – некоторая константа. Допустим P(х) – периодическая функция, и пусть P(х) имеет вещественные корни, тогда т.к. P(х) - периодическая функция, то их должно быть бесконечное множество. А по основной теореме алгебры их число k таково, что k ≤ n. Значит, P(х) не является периодической функцией.

3. Пусть P(х) тождественно неравный нулю многочлен, и он не имеет вещественных корней. Допустим, P(х) – периодическая функция. Введём многочлен q(х) = а 0 , q(х) – периодическая функция. Рассмотрим разность P(х) - q(х) = а 1 х 2 + … +а n х n .

Т.к. в левой части равенства стоит периодическая функция, то функция, стоящая в правой части, тоже периодична, причём, она имеет хотя бы один вещественный корень, х = 0. Т.к. функция периодична, то нулей должно быть бесконечное множество. Получили противоречие.

P(х) не является периодической функцией.

№ 17

Дана функция f(t) – Т – периодическая. Является ли функция f к (t), где

k є Z, периодической функцией, как связаны их периоды?

Решение. Доказательство проведём методом математической функции. Пусть

f 1 = f(t), тогда f 2 = f 2 (t) = f(t) · f(t),

F 3 = f 3 (t) = f(t) · f 2 – периодическая функция по свойству п. 4.

………………………………………………………………………….

Пусть f к-1 = f к-1 (t) – периодическая функция и её период Т к-1 соизмерим с периодом Т. Умножим обе части последнего равенства на f(t), получим f к-1 ·f(t) = f(t) ·f к-1 (t),

F к = f к (t) – периодическая функция по свойству п.4. ω ≤ Т.

№ 18

Пусть f(х – произвольная функция, определённая на . Является ли функция f({x}) периодической?

О т в е т: да, т.к. множество значений функции {x} принадлежит области определения функции f(х), то по свойству п.3 f({x}) – периодическая функция, её период ω = Т = 1.

№ 19

F(х) – произвольная функция, определённая на [-1; 1], является ли функция f(sinx) периодической?

О т в е т: да, её период ω = Т = 2π (доказательство аналогично № 18).


Особенности построения графика периодических функций

График периодической функции обычно сначала строят на промежутке [x 0 ; x 0 + T ). Выполняют параллельный перенос точек графика на всю об­ласть определения.

Примеры периодических функций и их графиков.

Примерами периодических функции могут служить тригонометрические функ­ции. Рассмотрим основные из них.

Функция F(x) =sin(x)

а) Область определения: D (sin x) = R .

б) Множество значений: E (sin x) = [– 1 , 1] .
в) Четность, нечетность: функция нечетная.

г) Периодичность: функция периодическая с основным периодом .

д) Нули функции: sin x = 0 при , n Z .

е) Промежутки знакопостоянства функции:

ж) Промежутки монотонности: функция возрастает при ;

функция убывает при ,

з) Экстремумы функции:
; .

График функции y= sin x изображен на рисунке.

Функция F(x) = cos(x)

а) Область определения .

б) Множество значений: E (cos x ) = [ – 1 , 1 ] .

в) Четность, нечетность: функция четная.

г) Периодичность: функция периодическая с основным периодом .

д)Нули функции: при .

е)Промежутки знакопостояннства:

ж) Промежутки монотонности:

функция возрастает при ;

функция убывает при

з) Экстремумы:

График функции y = cosx изображен на рисунке.

Функция F(x) = tg(x)

а) Область определения:

б) Множество значений: E ()

в) Четность, нечетность. Функция нечетная.

г) Периодичность. Функция периодическая с основным периодом

д) Нули функции.: tg x = 0 при x = n, n Z .

е) Промежутки знакопостоянства:

ж) Промежутки монотонности: функция возрастает на каждом интервале, целиком принадлежащем ее области определения.

з) Экстремумы: нет.

График функции y = tg x изображен на рисунке.

Функция F(x) = ctg(x)

а) Область определения: D (ctg x) = R \ { n(n Z) } .

б) Множество значений: E (ctg x) = R .
в) Четность, нечетность функция нечетная.

г) Периодичность: функция периодическая с основным периодом T = .

д) Нули функции: ctg x = 0 при x = /2 + n, n Z .

е) Промежутки знакопостоянства;

ж) Промежутки монотонности: функция убывает на каждом интервале, це­ликом принадлежащем ее области определения.

з) Экстремумы: нет.

График функции y = ctg x изображен на рисунке.

Интересные графики получаются с применением суперпозиции-образования сложных функций на основе тригонометрических периодических функций.

График периодической функции

II. Приложения периодических функций. Периодические колебания.

Колебания.

Колебаниями называют процессы, отличающиеся той или иной степенью повторяемости. Колебания являются процессами, повторяющимися через одинаковые промежутки времени (при этом далеко не все повторяющиеся процессы являются колебаниями). В зависимости от физической природы повторяющегося процесса различают колебания механические, электромагнитные, электромеханические и т.п. При механических колебаниях периодически изменяются положения и координаты тел. При электрических – напряжение и сила тока. В зависимости от характера воздействия на колеблющуюся систему различают свободные колебания, вынужденные, автоколебания и параметрические колебания.

Повторяющиеся процессы непрерывно происходят внутри любого живого организма, например: сокращения сердца, работа легких; мы дрожим, когда нам холодно; мы слышим и разговариваем благодаря колебаниям барабанных перепонок и голосовых связок; при ходьбе наши ноги совершают колебательные движения. Колеблются атомы, из которых мы состоим. Мир, в котором мы живем, склонен к колебаниям.

Периодические колебания.

Периодическими называют такие колебания, при которых все характеристики движения повторяются через определенный промежуток времени.

Для периодических колебаний используют следующие характеристики:

период колебаний Т, равный времени, в течение которого совершается одно полное колебание;

частота колебаний ν, равная числу колебаний, совершаемых за одну секунду (ν = 1/Т);

Параметрические колебания осуществляются при периодическом изменении параметров колеблющейся системы (качающийся на качелях человек периодически поднимает и опускает свой центр тяжести, тем самым меняя параметры системы). При определенных условиях система становится неустойчивой - случайно возникшее отклонение из положения равновесия приводит к возникновению и нарастанию колебаний. Это явление называется параметрическим возбуждением колебаний (т.е. колебания возбуждаются за счет изменения параметров системы), а сами колебания – параметрическими. Несмотря на разную физическую природу, для колебаний характерны одни и те же закономерности, которые исследуются общими методами. Важной кинематической характеристикой является форма колебаний. Она определяется видом той функции времени, которая описывает изменение той или иной физической величины при колебаниях. Наиболее важными являются такие колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса. Они называются гармоническими. Этот вид колебаний особенно важен по следующим причинам. Во-первых, колебания в природе и в технике часто имеют характер очень близких к гармоническим. Во-вторых, периодические процессы иной формы (с другой зависимостью от времени) могут быть представлены как наложение, или суперпозиция, гармонических колебаний.

Понравилась статья? Поделитесь ей