Контакты

Гравитация - что это такое? Сила гравитации. Гравитация Земли

Гравитация - самая таинственная сила во Вселенной. Ученые не знают до конца ее природы. Именно она удерживает на орбитах планеты Солнечной системы. Это сила, возникающая между двумя объектами и зависящая от массы и расстояния.

Гравитацию называют силой притяжения или тяготения. С помощью нее планета или другое тело тянет объекты к своему центру. Сила тяжести удерживает планеты на орбите вокруг Солнца.

Что еще делает гравитация?

Почему вы приземляетесь на землю, когда вскакиваете, а не уплываете в космос? Почему предметы падают, когда вы их бросаете? Ответ — невидимая сила тяжести, которая тянет объекты друг к другу. Земная гравитация — это то, что держит вас на земле и заставляет вещи падать.

Все, что имеет массу, имеет гравитацию. Мощь гравитации зависит от двух факторов: массы предметов и расстояния между ними. Если взять в руки камень и перо, с одинаковой высоты отпустить их, оба предмета упадут на землю. Тяжелый камень упадет быстрее пера. Перо еще повисит в воздухе, потому что оно легче. Объекты с большей массой имеют большую силу притяжения, которая становится слабее с расстоянием: чем ближе объекты друг к другу, тем сильнее их гравитационное тяготение.

Гравитация на Земле и во Вселенной

Во время полета самолета люди в нем остаются на местах и могут передвигаться как на земле. Так происходит из-за траектории полета. Существует специально разработанные самолеты, в которых на определенной высоте отсутствует гравитация, образуется невесомость. Самолет выполняет специальный маневр, масса предметов меняется, они ненадолго поднимаются в воздух. Через несколько секунд гравитационное поле восстанавливается.

Рассматривая силу гравитации в Космосе, у земного шара она больше большинства планет. Достаточно посмотреть движение космонавтов при высадке на планеты. Если по земле мы ходим спокойно, то там космонавты как бы парят в воздухе, но не улетают в космос. Это значит, что у данной планеты тоже есть сила тяготения, просто несколько иная, чем у планеты Земля.

Сила притяжения Солнца настолько велика, что удерживает девять планет, многочисленные спутники, астероиды и планеты.

Гравитация играет важнейшую роль в развитии Вселенной. При отсутствии силы тяготения, не было бы звезд, планет, астероидов, черных дыр, галактик. Интересно, что черных дыр на самом деле не видно. Ученые определяют признаки черной дыры по степени мощности гравитационного поля в определенной области. Если оно очень сильное с сильнейшим колебанием, это говорит о существовании черной дыры.

Миф 1. В космосе отсутствует гравитация

Просматривая документальные фильмы о космонавтах, кажется, что они парят над поверхностью планет. Так происходит из-за того, что на других планетах гравитация ниже, чем на Земле, поэтому космонавты идут как бы паря в воздухе.

Миф 2. Все приближающиеся к черной дыре тела разрываются

Черные дыры обладают мощной силой и образуют мощные гравитационные поля. Чем ближе объект к черной дыре, тем сильнее становятся приливные силы и мощность притяжения. Дальнейшее развитие событий зависит от массы объекта, размера черной дыры и расстояния между ними. Черная дыра имеет массу прямо противоположную ее размеру. Интересно, что чем больше размер дыры, тем слабее приливные силы и наоборот. Таким образом, не все объекты разрываются при попадании в поле черной дыры.

Миф 3. Искусственные спутники могут обращаться вокруг Земли вечно

Теоретически можно так сказать, если бы не влияние второстепенных факторов. Многое зависит от орбиты. На низкой орбите спутник вечно летать не сможет из-за атмосферного торможения, на высоких орбитах он может находиться в неизменном состоянии довольно долго, но здесь вступают в силу гравитационные силы других объектов.

Если бы из всех планет существовала только Земля, спутник притягивался бы к ней и практически не менял траекторию движения. Но на высоких орбитах объект окружает множество планет, больших и малых, каждая со своей силой тяготения.

В этом случае спутник бы постепенно отходил от своей орбиты и двигался хаотично. И, вполне вероятно, что по прошествии какого-то времени, он рухнул бы на ближайшую поверхность или перешел на другую орбиту.

Некоторые факты

  1. В некоторых уголках Земли сила гравитации имеет более слабую силу, чем на всей планете. Например, в Канаде, в районе Гудзонова залива сила притяжения ниже.
  2. Когда космонавты возвращаются из космоса на нашу планету, в самом начале им сложно приспособиться к гравитационной силе земного шара. Иногда это занимает несколько месяцев.
  3. Самой мощной силой гравитации среди космических объектов обладают черные дыры. Одна черная дыра размером с мячик имеет силу больше, чем любая планета.

Несмотря на непрекращающееся изучение силы притяжения, гравитация остается нераскрытой. Это означает, что научные знания остаются ограниченными и человечеству предстоит познать много нового.

Гравитационная сила – это сила, с которой притягиваются друг к другу тела определённой массы, находящиеся на определённом расстоянии друг от друга.

Английский учёный Исаак Ньютон в 1867 г. открыл закон всемирного тяготения. Это один из фундаментальных законов механики. Суть этого закона в следующем: любые две материальные частицы притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Сила притяжения – первая сила, которую почувствовал человек. Это сила, с которой Земля воздействует на все тела, находящиеся на её поверхности. И эту силу любой человек ощущает как собственный вес.

Закон всемирного тяготения


Существует легенда, что закон всемирного тяготения Ньютон открыл совершенно случайно, гуляя вечером по саду своих родителей. Творческие люди постоянно находятся в поиске, а научные открытия - это не мгновенное озарение, а плод длительной умственной работы. Сидя под яблоней, Ньютон осмысливал очередную идею, и вдруг на голову ему упало яблоко. Ньютону было понятно, что яблоко упало в результате действия силы притяжения Земли. «Но почему не падает на Землю Луна? - задумался он. - Значит, на неё действует ещё какая-то сила, удерживающая её на орбите». Так был открыт знаменитый закон всемирного тяготения .

Учёные, изучавшие до этого вращение небесных тел, считали, что небесные тела подчиняются каким-то совершенно другим законам. То есть, предполагалось, что существуют совершенно разные законы притяжения на поверхности Земли и в космосе.

Ньютон объединил эти предполагаемые виды гравитации. Анализируя законы Кеплера, описывающие движение планет, он пришёл к выводу, что сила притяжения возникает между любыми телами. То есть, и на яблоко, упавшее в саду, и на планеты в космосе действуют силы, подчиняющиеся одному закону – закону всемирного тяготения.

Ньютон установил, что законы Кеплера действуют только в том случае, если между планетами существует сила притяжения. И эта сила прямо пропорциональна массам планет и обратно пропорциональная квадрату расстояния между ними.

Сила притяжения рассчитывается по формуле F=G m 1 m 2 / r 2

m 1 – масса первого тела;

m 2 – масса второго тела;

r – расстояние между телами;

G – коэффициент пропорциональности, который называют гравитационной постоянной или постоянной всемирного тяготения .

Его значение определили экспериментально. G = 6,67·10 -11 Нм 2 /кг 2

Если две материальные точки с массой, равной единице массы, находятся на расстоянии, равном единице расстояния, то они притягиваются с силой, равной G .

Силы притяжения и есть гравитационные силы. Их называют ещё силами тяготения . Они подчинены закону всемирного тяготения и проявляются всюду, так как все тела имеют массу.

Сила тяжести


Гравитационная сила вблизи поверхности Земли – это сила, с которой все тела притягиваются к Земле. Её называют силой тяжести . Она считается постоянной, если расстояние тела от поверхности Земли мало по сравнению с радиусом Земли.

Так как сила тяжести, являющаяся гравитационной силой, зависит от массы и радиуса планеты, то на разных планетах она будет разной. Так как радиус Луны меньше радиуса Земли, то и сила притяжения на Луне меньше, чем на Земле в 6 раз. А на Юпитере, наоборот, сила тяжести в 2,4 раза больше силы тяжести на Земле. Но масса тела остаётся постоянной, независимо от того, где её измеряют.

Многие путают значение веса и силы тяжести, считая, что сила тяжести всегда равна весу. Но это не так.

Сила, с которой тело давит на опору или растягивает подвес, это и есть вес. Если убрать опору или подвес, тело начнёт падать с ускорением свободного падения под действием силы тяжести. Сила тяжести пропорциональна массе тела. Она вычисляется по формуле F = mg , где m – масса тела, g – ускорение свободного падения.

Вес тела может изменяться, а иногда и вообще исчезать. Представим себе, что мы находимся в лифте на верхнем этаже. Лифт стоит. В этот момент наш вес Р и сила тяжести F, с которой Земля притягивает нас, равны. Но как только лифт начал двигаться вниз с ускорением а , вес и сила тяжести уже не равны. Согласно второму закону Ньютона mg + P = ma . Р =m g - ma .

Из формулы видно, что наш вес при движении вниз уменьшился.

В момент, когда лифт набрал скорость и стал двигаться без ускорения, наш вес снова равен силе тяжести. А когда лифт стал замедлять своё движение, ускорение а стало отрицательным, и вес увеличился. Наступает перегрузка.

А если тело двигается вниз с ускорением свободного падения, то вес и вовсе станет равным нулю.

При a =g Р =mg-ma= mg - mg=0

Это состояние невесомости.

Итак, все без исключения материальные тела во Вселенной подчиняются закону всемирного тяготения. И планеты вокруг Солнца, и все тела, находящиеся у поверхности Земли.

Я решил по мере сил и возможностей подробнее остановиться на освещении научного наследия академика Николая Викторовича Левашова , потому что вижу, что его работы сегодня ещё не пользуются тем спросом, каким они должны были бы пользоваться в обществе действительно свободных и разумных людей. Люди ещё не понимают ценности и важности его книг и статей, потому что не догадываются о степени обмана, в котором мы живём последние пару веков; не понимают, что сведения о природе, которые мы считаем привычными и поэтому истинными, являются ложными на 100% ; и навязаны они нам намеренно, чтобы скрыть правду и не дать нам развиваться в правильном направлении…

Закон всеобщего тяготения

А зачем нам разбираться с этой гравитацией? Разве мы о ней чего-то ещё не знаем. Ну что вы! Мы уже очень много знаем о гравитации! Например, Википедия любезно сообщает нам, что «Гравитация (притяжение , всемирное , тяготение ) (от лат. gravitas – «тяжесть») – универсальное фундаментальное взаимодействие между всеми материальными телами. В приближении малых скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна…» Т.е. проще говоря, эта Интернет-болтушка сообщает, что гравитация – это взаимодействие между всеми материальными телами, а ещё проще говоря – взаимное притяжение материальных тел друг к другу.

Появлению такого мнения мы обязаны тов. Исааку Ньютону, которому приписывают открытие в 1687 году «Закона всеобщего тяготения» , по которому все тела якобы притягиваются друг к дружке пропорционально их массам и обратно пропорционально квадрату расстояния между ними. Радует уже то, что тов. Исаак Ньютон описан в Педии, как высокообразованный учёный, не в пример тов. , которому приписывают открытие электричества

Интересно взглянуть на размерность «Силы притяжения» или «Силы тяжести», которая вытекает из тов. Исаака Ньютона, имеющего следующий вид: F = m 1 * m 2 / r 2

В числителе стоит произведение масс двух тел. Это даёт размерность «килограммы в квадрате» – кг 2 . В знаменателе стоит «расстояние» в квадрате, т.е. метры в квадрате – м 2 . Но ведь сила-то измеряется не в странных кг 2 /м 2 , а в не менее странных кг*м/с 2 ! Получается нестыковочка. Чтобы её убрать, «учёные» придумали коэффициент, т.н. «гравитационную постоянную» G , равную примерно 6,67545×10 −11 м³/(кг·с²) . Если теперь всё перемножить, получим правильную размерность «Силы тяжести» в кг*м/с 2 , и вот эта абракадабра носит в физике название «ньютон» , т.е. сила в сегодняшней физике измеряется в « ».

А интересно: какой физический смысл имеет коэффициент G , для чего-то уменьшающий результат в 600 миллиардов раз? Никакого! «Учёные» назвали его «коэффициентом пропорциональности». А ввели его для подгонки размерности и результата под наиболее желательный! Вот такая у нас наука на сегодняшний день… Надо отметить, что, для запутывания учёных и сокрытия противоречий, в физике несколько раз менялись системы измерений – т.н. «системы единиц» . Вот названия некоторых из них, сменявших друг друга, по мере возникновения необходимости создания очередных маскировок: МТС, МКГСС, СГС, СИ…

Интересно было бы спросить у тов. Исаака: а как он догадался , что существует природный процесс притягивания тел друг к другу? Как он догадался , что «Сила притяжения» пропорциональна именно произведению масс двух тел, а не их сумме или разности? Каким образом он так удачно постиг, что эта Сила обратно пропорциональна именно квадрату расстояния между телами, а не кубу, удвоению или дробной степени? Откуда у тов. появились такие необъяснимые догадки 350 лет назад? Ведь никаких опытов в этой области он не проводил! И, если верить традиционной версии истории, в те времена даже линейки были ещё не совсем ровные, а тут такая необъяснимая, просто фантастическая прозорливость! Откуда ?

Да ниоткуда ! Тов. Исаак ни о чём таком не догадывался и ничего подобного не исследовал и не открывал . Почему? Потому что в действительности физического процесса «притяжения тел» друг к другу не существует, и, соответственно, не существует и Закона, который бы описывал этот процесс (это ниже будет убудительно доказано)! В реальности тов. Ньютону в нашем невнятном, просто приписали открытие закона «Всемирного тяготения», попутно наградив его званием «одного из создателей классической физики»; точно так же, как в своё время приписали тов. Бене Франклину , который имел 2 класса образования. В «Средневековой Европе» и не такое бывало: там не только с науками, но и просто с жизнью была большая напряжёнка…

Но, на наше счастье, в конце прошлого века, русский учёный Николай Левашов написал несколько книг, в которых дал «алфавит и грамматику» неискажённых знаний ; вернул землянам уничтоженную ранее научную парадигму, с помощью которой легко объяснил практически все «неразрешимые» загадки земной природы; объяснил основы строения Мироздания; показал, при каких условиях на всех планетах, на которых появляются необходимые и достаточные условия, возникает Жизнь живая материя. Растолковал, какая именно материя может считаться живой, и каков физический смысл природного процесса под название «жизнь ». Далее пояснил, когда и при каких условиях «живая материя» обретает Разум , т.е. осознаёт своё существование – становится разумной. Николай Викторович Левашов передал людям в своих книгах , и фильмах очень много неискажённых знаний . В том числе, он объяснил и что такое «гравитация» , откуда она берётся, как действует, каков в действительности её физический смысл. Больше всего об этом написано в книгах и . А теперь разберёмся с «Законом всемирного тяготения»…

«Закон всемирного тяготения» – выдумка!

Почему я так смело и уверенно критикую физику, «открытие» тов. Исаака Ньютона и сам «великий» «Закон всемирного тяготения»? Да потому что этот «Закон» – выдумка! Обман! Фикция! Афёра всемирного масштаба, чтобы увести земную науку в тупик! Такая же афёра с теми же целями, как и пресловутая «Теория относительности» тов. Эйнштейна.

Доказательства? Извольте, вот они: очень точные, строгие и убедительные. Их великолепно описал автор О.Х. Деревенский в своей замечательной статье . Ввиду того, что статья довольно объёмная, я приведу здесь очень краткий вариант некоторых доказательств ложности «Закона всемирного тяготения», а граждане, интересующиеся подробностями, остальное дочитают уже сами.

1. В нашей Солнечной системе гравитацией обладают только планеты и Луна – спутник Земли. Спутники же остальных планет, а их более шести десятков, гравитацией не обладают! Эта информация совершенно открытая, но не афишируемая «учёным» людом, потому что необъяснима с точки зрения их «науки». Т.е. бо льшая часть объектов нашей Солнечной системы гравитацией не обладают – не притягиваются друг к другу! И это начисто опровергает «Закон всеобщего тяготения».

2. Опыт Генри Кавендиша по притягиванию массивных болванок друг к другу считается неопровержимым доказательством наличия притяжения между телами. Однако, несмотря на его простоту, этот опыт нигде открыто не воспроизводится. Видимо, потому, что он не даёт того эффекта, о котором когда-то объявили некие люди. Т.е. сегодня, при возможности строгой проверки, опыт не показывает никакого притяжения между телами!

3. Вывод искусственного спутника на орбиту вокруг астероида. В середине февраля 2000 года американцы подогнали космический зонд NEAR достаточно близко к астероиду Эрос , уровняли скорости и стали ждать захвата зонда тяготением Эроса , т.е. когда спутник мягко притянется тяготением астероида.

Но первое свидание почему-то не заладилось. Вторая и последующие попытки отдаться Эросу имели ровно такой же эффект: Эрос не возжелал притянуть к себе американский зонд NEAR , а без подработки двигателем, зонд вблизи Эроса не держался. Это космическое свидание так и закончилось ничем. Т.е. никакого притяжения между зондом с массой 805 кг и астероидом массой более 6 триллионов тонн обнаружить не удалось.

Здесь нельзя не отметить ничем не объяснимое упорство американцев из НАСА, ведь русский учёный Николай Левашов , проживая в то время в США, которые он тогда считал вполне нормальной страной, написал, перевёл на английский язык и издал в 1994 году свою знаменитую книгу , в которой «на пальцах» объяснил всё, что нужно было знать специалистам из НАСА, чтобы их зонд NEAR не болтался безполезной железкой в Космосе, а принёс хоть какую-нибудь пользу обществу. Но, видимо, непомерное самомнение сыграло свою шутку с тамошними «учёными».

4. Следующую попытку повторить эротический эксперимент с астероидом взялись японцы . Они выбрали астероид под названием Итокава , и направили 9 мая 2003 года к нему зонд под названием («Сокол»). В сентябре 2005 года зонд приблизился к астероиду на расстояние 20 км.

Учтя опыт «тупых американцев», умные японцы свой зонд оснастили несколькими движками и автономной системой ближней навигации с лазерными дальномерами, так что он мог сближаться с астероидом и двигаться около него автоматически, без участия наземных операторов. «Первым номером этой программы оказался комедийный трюк с высадкой небольшого исследовательского робота на поверхность астероида. Зонд снизился на расчётную высоту и аккуратненько сбросил робота, который должен был медленно и плавно упасть на поверхность. Но… не упал. Медленно и плавно его понесло куда-то вдаль от астероида . Там и пропал без вести… Следующим номером программы оказался, опять же, комедийный трюк с кратковременной посадкой зонда на поверхность «для взятия пробы грунта». Комедийным он вышел оттого, что, для обеспечения наилучшей работы лазерных дальномеров, на поверхность астероида был сброшен отражающий шар-маркер. На этом шаре тоже движков не было и… короче, на положенном месте шара не оказалось… Так что сел ли японский «Сокол» на Итокаву, и что он на ней делал, если сел, – науке неизвестно…» Вывод: японская чуда Хаябуса не смогла обнаружить никакого притяжения между зондом массой 510 кг и астероидом массой 35 000 тонн.

Отдельно хочется заметить, что исчерпывающее объяснение природе гравитации русский учёный Николай Левашов дал в своей книге , которую впервые издал в 2002 году – почти за полтора года до старта японского «Сокола». И, несмотря на это, японские «учёные» пошли точно по стопам своих американских коллег и тщательно повторили все их ошибки, включая посадку. Вот такая интересная преемственность «научного мышления»…

5. Откуда берутся приливы? Очень интересное явление, описываемое в литературе, мягко выражаясь, не совсем корректно. «…Есть учебники по физике , где написано, каковы должны быть – в согласии с «законом всемирного тяготения». А ещё есть учебники по океанографии , где написано, каковы они, приливы, на самом деле .

Если закон всемирного тяготения здесь действует, и океанская вода притягивается, в том числе, к Солнцу и к Луне, то «физическая» и «океанографическая» картины приливов должны совпадать. Так совпадают они или нет? Оказывается: сказать, что они не совпадают – это ещё ничего не сказать. Потому что «физическая» и «океанографическая» картины вообще не имеют между собой ничего общего … Фактическая картина приливных явлений настолько сильно отличается от теоретической – и качественно, и количественно – что на основе такой теории предвычислять приливы невозможно . Да никто и не пытается это делать. Не сумасшедшие ведь. Делают вот как: для каждого порта или иного пункта, который представляет интерес, динамику уровня океана моделируют суммой колебаний с амплитудами и фазами, которые находят чисто эмпирически . А затем экстраполируют эту сумму колебаний вперёд – вот вам и получаются предвычисления. Капитаны судов довольны – ну и ладушки!..» Это всё означает, что наши земные приливы тоже не подчиняются «Закону всемирного тяготения».

Что такое гравитация в действительности

Настоящую природу гравитации впервые в новейшей истории внятно описал академик Николай Левашов в фундаментальном научном труде . Чтобы читатель лучше мог понять написанное касательно гравитации, дам небольшое предварительное пояснение.

Пространство вокруг нас не является пустым. Оно всё полностью заполнено множеством различных материй, которые академик Н.В. Левашов назвал «первоматериями» . Раньше учёные всё это буйство материй называли «эфиром» и даже получили убедительные доказательства его существования (известные опыты Дайтона Миллера, описанные в статье Николая Левашова «Теория Вселенной и объективная реальность»). Современные «учёные» пошли гораздо дальше и теперь они «эфир» называют «тёмной материей» . Колоссальный прогресс! Некоторые материи в «эфире» взаимодействуют между собой в той или иной степени, некоторые – нет. А какие-то первоматерии начинают взаимодействовать между собой, попадая в изменённые внешние условия в тех или иных искривлениях пространства (неоднородностях).

Искривления пространства появляются в результате различных взрывов, в том числе и «взрывов сверхновых». « При взрыве сверхновой, возникают колебания мерности пространства, аналогичные волнам, которые появляются на поверхности воды после броска камня. Массы материи, выброшенные при взрыве, заполняют эти неоднородности мерности пространства вокруг звезды. Из этих масс материи начинают образовываться планеты ( и )…»

Т.е. планеты образуются не из космического мусора, как почему-то утверждают современные «учёные», а синтезируются из материи звёзд и других первоматерий, начинающих взаимодействовать между собой в подходящих неоднородностях пространства и образующих т.н. «гибридные материи» . Вот из этих «гибридных материй» образуются и планеты, и всё остальное в нашем пространстве. Наша планета , так же, как и остальные планеты, является не просто «куском камня», а весьма непростой системой, состоящей из нескольких сфер, вложенных одна в другую (см. ). Самая плотная сфера называется «физически плотным уровнем» – это видимый нами, т.н. физический мир. Вторая по плотности сфера чуть большего размера – это т.н. «эфирный материальный уровень» планеты. Третья сфера – «астральный материальный уровень». Четвёртая сфера – «первый ментальный уровень» планеты. Пятая сфера – «второй ментальный уровень» планеты. И шестая сфера – «третий ментальный уровень» планеты.

Наша планета должна рассматриваться только как совокупность этих шести сфер – шести материальных уровней планеты, вложенных одна в другую. Только в этом случае можно получить полноценное представление о строении и свойствах планеты и о процессах, происходящих в природе. То, что мы пока не в состоянии наблюдать процессы, происходящие вне физически плотной сферы нашей планеты, свидетельствует не о том, что «там ничего нет», а лишь о том, что в настоящее время наши органы чувств не приспособлены природой для этих целей. И ещё: наша Вселенная, наша планета Земля и всё остальное в нашей Вселенной образовано из семи различных видов первоматерий, слившихся в шесть гибридных материй. И это не является ни божественным, ни уникальным явлением. Это просто качественная структура нашей Вселенной, обусловленная свойствами неоднородности, в которой она образовалась.

Продолжим: планеты образуются при слиянии соответствующих первоматерий в областях неоднородностей пространства, имеющих подходящие для этого свойства и качества. Но в эти, как и во все остальные, области пространства попадает огромное число первоматерий (свободных форм материй) различных видов, не взаимодействующих или очень слабо взаимодействующих с гибридными материями. Попадая в область неоднородности, многие из этих первоматерий подвергаются воздействию этой неоднородности и устремляются к её центру, в соответствии с градиентом (перепадом) пространства. И, если в центре этой неоднородности уже образовалась планета, то первоматерии, двигаясь к центру неоднородности (и центру планеты), создают собой направленный поток , который и создаёт т.н. гравитационное поле . И, соответственно, под гравитацией нам с вами нужно понимать воздействие направленного потока первоматерий на всё, находящееся на его пути. Т.е., проще говоря, гравитация – это прижимание материальных объектов к поверхности планеты потоком первоматерий.

Не правда ли, реальность весьма сильно отличается от выдуманного закона «взаимного притяжения», якобы существующего везде по никому не понятной причине. Реальность гораздо интереснее, гораздо сложнее и гораздо проще, одновременно. Потому физику реальных природных процессов понять гораздо легче, чем выдуманных. И использование реальных знаний ведёт к реальным открытиям и эффективному использованию этих открытий, а не к высосанным из пальца .

Антигравитация

В качестве примера сегодняшней научной профанации можно кратко проанализировать объяснение «учёными» того факта, что «лучи света искривляются вблизи больших масс», и поэтому мы можем видеть то, что закрыто он нас звёздами и планетами.

Действительно, мы можем наблюдать в Космосе объекты, скрытые от нас другими объектами, но это явление не имеет никакого отношения к массам объектов, потому что явления «всемирного » не существует, т.е. ни звёзды, ни планеты НЕ притягивают к себе никакие лучи и не искривляют их траекторию! А, почему же тогда они «искривляются»? На этот вопрос есть очень простой и убедительный ответ: лучи не искривляются ! Просто они распространяются не по прямой , как мы привыкли понимать, а в соответствии с формой пространства . Если мы рассматриваем луч, проходящий возле большого космического тела, то надо иметь в виду, что луч огибает это тело, потому что вынужден следовать по искривлению пространства, как по дороге соответствующей формы. И другого пути у луча просто не существует. Луч не может не огибать это тело, потому что пространство в этом районе имеет вот такую искривлённую форму… Небольшая к сказанному.

Теперь, возвращаясь к антигравитации , становится понятно, почему Человечеству никак не удаётся поймать эту противную «антигравитацию» или достичь хоть чего-нибудь из того, что показывают нам по телевизору ловкие функционеры фабрики грёз. Нас специально заставляют уже больше сотни лет почти везде использовать двигатели внутреннего сгорания или реактивные двигатели, хотя они очень далеки от совершенства и по принципу действия, и по конструкции, и по эффективности. Нас специально заставляют добывать , используя различные генераторы циклопических размеров, а потом передавать эту энергию по проводам, где бо льшая её часть рассеивается в пространстве! Нас специально заставляют жить жизнью неразумных существ, поэтому мы не имеем никаких оснований для удивления тому, что у нас ничего толкового не получается ни в науке, ни в технике, ни в экономике, ни в медицине, ни в организации достойной жизни социума.

Я сейчас вам приведу несколько примеров создания и использования антигравитации (она же левитация) в нашей жизни. Но эти способы достижения антигравитации являются, скорее всего, случайно обнаруженными. А для того, чтобы сознательно создать действительно полезное устройство, реализующее антигравитацию, нужно познать реальную природу явления гравитации, изучить его, проанализировать и понять всю его суть! Только тогда можно создать нечто толковое, эффективное и действительно полезное обществу.

Самое распространённое у нас устройство, использующее антигравитацию, это воздушный шарик и многочисленные его вариации. Если его наполнить тёплым воздухом или газом, более лёгким, чем атмосферная газовая смесь, то шарик будет стремиться улететь вверх, а не опуститься вниз. Этот эффект известен людям очень давно, но до сих пор не имеет исчерпывающего объяснения – такого, которое уже не порождало бы новых вопросов.

Недолгий поиск в Ютюбе привёл к обнаружению большого числа видеороликов, на которых демонстрируются вполне реальные примеры антигравитации. Некоторые из них я перечислю здесь, чтобы вы смогли убедиться, что антигравитация (левитация ) действительно существует, но… до сих пор никем из «учёных» не объяснена, видимо, гордость не позволяет…

ПостНаука развенчивает научные мифы и объясняет общепринятые заблуждения. Мы попросили наших экспертов рассказать о гравитации - силе, из-за которой все тела стремятся упасть на Землю, - и единственном фундаментальном взаимодействии, в котором напрямую участвуют все частицы, которые мы знаем.

Искусственные спутники Земли будут обращаться вокруг нее вечно

Это правда, но отчасти. Зависит это от орбиты. На низких орбитах спутники вечно вокруг Земли не обращаются. Это связано с тем, что, помимо гравитации, существуют и другие факторы. То есть если бы, допустим, у нас была только Земля и мы бы запустили на ее орбиту спутник, то он летал бы очень долго. Летать вечно он не будет, потому что существуют различные возмущающие факторы, которые его могут свести с орбиты. В первую очередь это торможение в атмосфере, то есть это негравитационные факторы. Таким образом, связь этого мифа с гравитацией неочевидна.

Если спутник обращается на высоте до тысячи километров над Землей, то торможение в атмосфере будет влиять. На более высоких орбитах начинают действовать прочие гравитационные факторы - притяжение Луны, других планет . Если спутник оставить бесконтрольно на орбите вокруг Земли, то его орбита будет эволюционировать хаотически на больших интервалах времени из-за того, что Земля не единственное притягивающее тело. Не уверен, что эта хаотическая эволюция обязательно приведет к падению спутника на Землю - он может улететь или перейти на другую орбиту. Другими словами, он может летать вечно, но не по одной и той же орбите.

В космосе нет гравитации

Это неправда. Иногда кажется, что раз на МКС космонавты находятся в состоянии невесомости, то и земная гравитация на них не действует. Это не так. Более того, она там почти такая же, как на Земле.

В самом деле, сила гравитационного притяжения между двумя телами прямо пропорциональна произведению их масс и обратно пропорциональна расстоянию между ними. Высота орбиты МКС примерно на 10% больше земного радиуса. Поэтому сила притяжения там лишь немного меньше. Однако космонавты испытывают состояние невесомости, так как они как бы все время падают на Землю, но промахиваются.

Можно представить себе такую картину. Построим башню высотой километров 400 (неважно, что сейчас нет таких материалов, чтобы ее сделать). Поставим наверху стул и сядем на него. Мимо пролетает МКС, то есть мы находимся совсем-совсем рядом. Мы сидим на стуле и «весим» (хотя по сравнению с нашим весом на поверхности Земли мы полегчали, но зато нам надо надеть скафандр, так что это компенсирует наше «похудание»), а на МКС космонавты парят в невесомости. Но мы находимся в одном и том же гравитационном потенциале.

Современные теории гравитации являются геометрическими. То есть массивные тела искажают пространство-время вокруг себя. Чем ближе мы к тяготеющему телу, тем больше искажение. Как вы двигаетесь по искривленному пространству - это уже не так важно. Оно остается искривленным, то есть гравитация никуда не делась.

Парад планет может «уменьшить гравитацию» на Земле

Это неправда. Парадами планет называют такие моменты, когда все планеты выстраиваются в цепочку по направлению к Солнцу и их гравитационные силы складываются арифметически. Разумеется, на одной прямой все планеты никогда не соберутся, но если ограничиться требованием, чтобы все восемь планет собрались в гелиоцентрическом секторе с углом раствора не более 90°, то такие «большие» парады иногда происходят - в среднем один раз за 120 лет.

Может ли совместное влияние планет изменить гравитацию на Земле? Любители физики знают, что сила тяготения изменяется прямо пропорционально массе тела и обратно пропорционально квадрату расстояния до него (М/R2). Наибольшее гравитационное влияние на Землю оказывают (она не очень массивна, но расположена близко) и (он очень массивен). Простой расчет показывает, что наше притяжение к Венере даже при наибольшем с ней сближении в 50 млн раз слабее нашего притяжения к Земле; для Юпитера это соотношение составляет 30 млн. То есть если ваш вес около 70 кг, то Венера и Юпитер тянут вас к себе с силой примерно в 1 миллиграмм. Во время парада планет они тянут в разные стороны, практически компенсируя влияние друг друга.

Но это еще не все. Обычно под гравитацией Земли мы понимаем не силу притяжения к планете, а наш вес.

А он зависит еще и от того, как мы движемся. Например, космонавтов на МКС и нас с вами Земля притягивает почти одинаково, но у них там невесомость, поскольку они находятся в состоянии свободного падения, а мы упираемся в Землю. А по отношению к другим планетам мы все ведем себя, как экипаж МКС: вместе с Землей мы свободно «падаем» на каждую из окружающих планет. Поэтому мы не ощущаем даже того миллиграмма, о котором было сказано выше.

Но некоторый эффект все же есть. Дело в том, что мы, живя на поверхности Земли, и сама Земля, если иметь в виду ее центр, находимся на разном расстоянии от притягивающих нас планет. Эта разница не превышает размера Земли, но иногда имеет значение. Именно из-за нее в океанах под влиянием притяжения Луны и Солнца возникают приливы и отливы. Но если иметь в виду человека и притяжение к планетам, то этот приливный эффект невероятно слаб (в десятки тысяч раз слабее прямого притяжения к планетам) и составляет для каждого из нас менее одной миллионной доли грамма - практически ноль.

Владимир Сурдин

кандидат физико-математических наук, старший научный сотрудник Государственного астрономического института им. П. К. Штернберга МГУ

Тело, подлетающее к черной дыре, будет разорвано

Это неправда. При приближении к сила гравитации и приливные силы возрастают. Но вовсе не обязательно приливные силы становятся крайне велики, когда объект подлетает к горизонту событий.

Приливные силы зависят от массы, вызывающего прилив тела, расстояния до него и от размеров объекта, в котором формируется прилив. Важно, что расстояние считается до центра тела, а не до поверхности. Так что приливные силы на горизонте черной дыры всегда имеют конечное значение.

У черной дыры размер прямо пропорционален массе. Так что, если мы возьмем какой-то предмет и будем кидать его в разные черные дыры, приливные силы будут зависеть только от массы черной дыры. Причем чем больше масса, тем прилив слабее на горизонте.

В природе известны лишь четыре основные фундаментальные силы (их еще называют основными взаимодействиями ) - гравитационное взаимодействие, электромагнитное взаимодействие, сильное взаимодействие и слабое взаимодействие .

Гравитационное взаимодействие является самым слабым из всех. Гравитационные силы связывают воедино части земного шара и это же взаимодействие определяет крупномасштабные события во Вселенной .

Электромагнитное взаимодействие удерживает электроны в атомах и связывает атомы в молекулы. Частным проявлением этих сил являются кулоновские силы , действующие между неподвижными электрическими зарядами.

Сильное взаимодействие связывает нуклоны в ядрах. Это взаимодействие является самым сильным, но действует оно только на весьма коротких расстояниях.

Слабое взаимодействие действует между элементарными частицами и имеет очень малую дальность. Оно проявляется при бета-распаде.

4.1.Закон всемирного тяготения Ньютона

Между двумя материальными точками действует сила взаимного притяжения, прямо пропорциональная произведению масс этих точек (m и М) и обратно пропорциональная квадрату расстояния между ними (r 2 ) и направленная вдоль прямой, проходящей через взаимодействующие тела F = (GmM/r 2)r o ,(1)

здесь r o - единичный вектор, проведенный в направлении действия силы F (рис.1а).

Эта сила называется гравитационной силой (или силой всемирного тяготения ). Гравитационные силы всегда являются силами притяжения . Сила взаимодействия между двумя телами не зависит от среды, в которой находятся тела .

g 1 g 2

Рис.1а Рис.1b Рис.1с

Постоянная G называется гравитационной постоянной . Ее значение установлено опытным путем: G = 6.6720 . 10 -11 Н. м 2 /кг 2 - т.е. два точечных тела массой по 1кг каждое, находящихся на расстоянии 1 м друг от друга, притягиваются с силой 6.6720 . 10 -11 Н. Очень малая величина G как раз и позволяет говорить о слабости гравитационных сил - их следует принимать во внимание только в случае больших масс.

Массы, входящие в уравнение (1), называются гравитационными массами . Этим подчеркивается, что в принципе массы, входящие во второй закон Ньютона (F =m ин a )и в закон всемирного тяготения (F =(Gm гр M гр /r 2)r o ), имеют различную природу. Однако установлено, что отношение m гр / m ин для всех тел одинаково с относительной погрешностью до 10 -10 .

4.2.Гравитационное поле (поле тяготения) материальной точки

Считается, что гравитационное взаимодействие осуществляется с помощью гравитационного поля (поля тяготения) , которое порождается самими телами . Вводится две характеристики этого поля: векторная - и скалярная - потенциал гравитационного поля .

4.2.1.Напряженность гравитационного поля

Пусть имеем материальную точку с массой М. Считается, что вокруг этой массы возникает гравитационное поле. Силовой характеристикой такого поля является напряженность гравитационного поля g , которая определяется из закона всемирного тяготения g = (GM/r 2)r o ,(2)

где r o - единичный вектор, проведенный из материальной точки в направлении действия гравитационной силы. Напряженность гравитационного поля g есть векторная величина и является ускорением, получаемым точечной массой m, внесенной в гравитационное поле, созданным точечной массой М. Действительно, сравнивая (1) и (2), получаем для случая равенства гравитационной и инертной масс F =mg.

Подчеркнем, что величина и направление ускорения, получаемое телом, внесенным в гравитационное поле, не зависит от величины массы внесенного тела . Поскольку основной задачей динамики является определение величины ускорения, получаемого телом под действием внешних сил, то, следовательно, напряженность гравитационного поля полностью и однозначно определяет силовые характеристики гравитационного поля . Зависимость g(r) приведена на рис.2a.

Рис.2а Рис.2b Рис.2с

Поле называется центральным , если во всех точках поля векторы напряженности направлены вдоль прямых, которые пересекаются в одной точка, неподвижной по отношению к какой-либо инерциальной системе отсчета . В частности, гравитационное поле материальной точки является центральным: во всех точках поля векторы g и F =mg , действующие на тело, внесенное в гравитационное поле, направлены радиально от массы М, создающей поле, к точечной массе m (рис.1b).

Закон всемирного тяготения в форме (1) установлен для тел, принимаемых за материальные точки, т.е. для таких тел, размеры которых малы по сравнению с расстоянием между ними. Если же размерами тел пренебречь нельзя, то тела следует разбить на точечные элементы, по формуле (1) подсчитать силы притяжения между всеми попарно взятыми элементами и затем геометрически сложить. Напряженность гравитационного поля системы, состоящей из материальных точек с массами М 1 , М 2 , ..., М n , равна сумме напряженностей полей от каждой из этих масс в отдельности (принцип суперпозиции гравитационных полей ): g =g i , где g i = (GМ i /r i 2)r o i - напряженность поля одной массы М i .

Графическое изображение гравитационного поля с помощью векторов напряженности g в различных точках поля очень неудобно: для систем, состоящих из многих материальных точек, вектора напряженности накладываются друг на друга и получается весьма запутанная картина. Поэтому для графического изображения гравитационного поля используют силовые линии (линии напряженности) , которые проводят таким образом, что вектор напряженности направлен по касательной к силовой линии . Линии напряженности считаются направленными так же, как вектор g (рис.1с), т.е. силовые линии оканчиваются на материальной точке . Так как в каждой точке пространства вектор напряженности имеет лишь одно направление , то линии напряженности никогда не пересекаются . Для материальной точки силовые линии представляют собой радиальные прямые, входящие в точку (рис.1b).

Чтобы с помощью линий напряженности можно было характеризовать не только направление, но и значение напряженности поля, эти линии проводят с определенной густотой: число линий напряженности, пронизывающих единицу площади поверхности, перпендикулярную линиям напряженности, должно быть равно модулю вектор g .

Понравилась статья? Поделитесь ей