Контакты

Наименьшее общее кратное НОК. Как найти наименьшее общее кратное чисел Чему равен нод

Нахождение наибольшего общего делителя трех и большего количества чисел может быть сведено к последовательному нахождению НОД двух чисел. Мы об этом упоминали, при изучении свойств НОД. Там мы сформулировали и доказали теорему: наибольший общий делитель нескольких чисел a 1 , a 2 , …, a k равен числу d k , которое находится при последовательном вычислении НОД(a 1 , a 2)=d 2 , НОД(d 2 , a 3)=d 3 , НОД(d 3 , a 4)=d 4 , …,НОД(d k-1 , a k)=d k .

Давайте разберемся, как выглядит процесс нахождения НОД нескольких чисел, рассмотрев решение примера.

Пример.

Найдите наибольший общий делитель четырех чисел 78 , 294 , 570 и 36 .

Решение.

В этом примере a 1 =78 , a 2 =294 , a 3 =570 , a 4 =36 .

Сначала по алгоритму Евклида определим наибольший общий делитель d 2 двух первых чисел 78 и 294 . При делении получаем равенства 294=78·3+60 ; 78=60·1+18 ;60=18·3+6 и 18=6·3 . Таким образом, d 2 =НОД(78, 294)=6 .

Теперь вычислим d 3 =НОД(d 2 , a 3)=НОД(6, 570) . Опять применим алгоритм Евклида:570=6·95 , следовательно, d 3 =НОД(6, 570)=6 .

Осталось вычислить d 4 =НОД(d 3 , a 4)=НОД(6, 36) . Так как 36 делится на 6 , тоd 4 =НОД(6, 36)=6 .

Таким образом, наибольший общий делитель четырех данных чисел равен d 4 =6 , то есть,НОД(78, 294, 570, 36)=6 .

Ответ:

НОД(78, 294, 570, 36)=6 .

Разложение чисел на простые множители также позволяет вычислять НОД трех и большего количества чисел. В этом случае наибольший общий делитель находится как произведение всех общих простых множителей данных чисел.

Пример.

Вычислите НОД чисел из предыдущего примера, используя их разложения на простые множители.

Решение.

Разложим числа 78 , 294 , 570 и 36 на простые множители, получаем 78=2·3·13 ,294=2·3·7·7 , 570=2·3·5·19 , 36=2·2·3·3 . Общими простыми множителями всех данных четырех чисел являются числа 2 и 3 . Следовательно, НОД(78, 294, 570, 36)=2·3=6 .

Ответ:

НОД(78, 294, 570, 36)=6 .

К началу страницы

Нахождение НОД отрицательных чисел

Если одно, несколько или все числа, наибольший делитель которых нужно найти, являются отрицательными числами, то их НОД равен наибольшему общему делителю модулей этих чисел. Это связано с тем, что противоположные числа a и −a имеют одинаковые делители, о чем мы говорили при изучении свойств делимости.

Пример.

Найдите НОД отрицательных целых чисел −231 и −140 .

Решение.

Модуль числа −231 равен 231 , а модуль числа −140 равен 140 , иНОД(−231, −140)=НОД(231, 140) . Алгоритм Евклида дает нам следующие равенства:231=140·1+91 ; 140=91·1+49 ; 91=49·1+42 ; 49=42·1+7 и 42=7·6 . Следовательно,НОД(231, 140)=7 . Тогда искомый наибольший общий делитель отрицательных чисел−231 и −140 равен 7 .


Ответ:

НОД(−231, −140)=7 .

Пример.

Определите НОД трех чисел −585 , 81 и −189 .

Решение.

При нахождении наибольшего общего делителя отрицательные числа можно заменить их абсолютными величинами, то есть, НОД(−585, 81, −189)=НОД(585, 81, 189) . Разложения чисел 585 , 81 и 189 на простые множители имеют соответственно вид585=3·3·5·13 , 81=3·3·3·3 и 189=3·3·3·7 . Общими простыми множителями этих трех чисел являются 3 и 3 . Тогда НОД(585, 81, 189)=3·3=9 , следовательно,НОД(−585, 81, −189)=9 .

Ответ:

НОД(−585, 81, −189)=9 .

35. Корені многочлена. Теорема Безу. (33 и выше)

36. Кратні корені, критерій кратності кореня.

Для нахождения НОД (наибольшего общего делителя) двух чисел необходимо:

2. Найти (подчеркнуть) все общие простые множители в полученных разложениях.

3. Найти произведение общих простых множителей.

Для нахождения НОК (наименьшего общего кратного) двух чисел необходимо:

1. Разложить данные числа на простые множители.

2. Разложение одного из них дополнить теми множителями разложения другого числа, которых нет в разложении первого.

3. Вычислить произведение полученных множителей.

Нахождение НОД

НОД - это наибольший общий делитель.

Чтобы найти наибольший общий делитель нескольких чисел необходимо:

  • определить множители, общие для обоих чисел;
  • найти произведение общих множителей.

Пример нахождения НОД:

Найдем НОД чисел 315 и 245.

315 = 5 * 3 * 3 * 7;

245 = 5 * 7 * 7.

2. Выпишем множители, общие для обоих чисел:

3. Найдем произведение общих множителей:

НОД(315; 245) = 5 * 7 = 35.

Ответ: НОД(315; 245) = 35.

Нахождение НОК

НОК - это наименьшее общее кратное.

Чтобы найти наименьшее общее кратное нескольких чисел необходимо:

  • разложить числа на простые множители;
  • выписать множители, входящие в разложение одного из чисел;
  • допишем к ним недостающие множители из разложения второго числа;
  • найти произведение получившихся множителей.

Пример нахождения НОК:

Найдем НОК чисел 236 и 328:

1. Разложим числа на простые множители:

236 = 2 * 2 * 59;

328 = 2 * 2 * 2 * 41.

2. Выпишем множители, входящие в разложение одного из чисел и допишем к ним недостающие множители из разложения второго числа:

2; 2; 59; 2; 41.

3. Найдем произведение получившихся множителей:

НОК(236; 328) = 2 * 2 * 59 * 2 * 41 = 19352.

Ответ: НОК(236; 328) = 19352.

Рассмотрим два основных метода нахождения НОД двумя основными способами: с использованием алгоритма Евклида и путем разложения на простые множители. Применим оба метода для двух, трех и большего количества чисел.

Алгоритм Евклида для нахождения НОД

Алгоритм Евклида позволяет с легкостью вычислить наибольший общий делитель для двух положительных чисел. Формулировки и доказательство алгоритма Евклида мы привели в разделе «Наибольший общий делитель: определитель, примеры».

Суть алгоритма заключается в том, чтобы последовательно проводить деление с остатком, в ходе которого получается ряд равенств вида:

a = b · q 1 + r 1 , 0 < r 1 < b b = r 1 · q 2 + r 2 , 0 < r 2 < r 1 r 1 = r 2 · q 3 + r 3 , 0 < r 3 < r 2 r 2 = r 3 · q 4 + r 4 , 0 < r 4 < r 3 ⋮ r k - 2 = r k - 1 · q k + r k , 0 < r k < r k - 1 r k - 1 = r k · q k + 1

Мы можем закончить деление тогда, когда r k + 1 = 0 , при этом r k = НОД (a , b) .

Пример 1

64 и 48 .

Решение

Введем обозначения: a = 64 , b = 48 .

На основе алгоритма Евклида проведем деление 64 на 48 .

Получим 1 и остаток 16 . Получается, что q 1 = 1 , r 1 = 16 .

Вторым шагом разделим 48 на 16 , получим 3 . То есть q 2 = 3 , а r 2 = 0 . Таким образом число 16 – это наибольший общий делитель для чисел из условия.

Ответ: НОД (64 , 48) = 16 .

Пример 2

Чему равен НОД чисел 111 и 432 ?

Решение

Делим 432 на 111 . Согласно алгоритму Евклида получаем цепочку равенств 432 = 111 · 3 + 99 , 111 = 99 · 1 + 12 , 99 = 12 · 8 + 3 , 12 = 3 · 4 .

Таким образом, наибольший общий делитель чисел 111 и 432 – это 3 .

Ответ: НОД (111 , 432) = 3 .

Пример 3

Найдите наибольший общий делитель чисел 661 и 113 .

Решение

Проведем последовательно деление чисел и получим НОД (661 , 113) = 1 . Это значит, что 661 и 113 – это взаимно простые числа. Мы могли выяснить это до начала вычислений, если бы обратились к таблице простых чисел.

Ответ: НОД (661 , 113) = 1 .

Нахождение НОД с помощью разложения чисел на простые множители

Для того, чтобы найти наибольший общий делитель двух чисел методом разложения на множители, необходимо перемножить все простые множители, которые получаются при разложении этих двух чисел и являются для них общими.

Пример 4

Если мы разложим числа 220 и 600 на простые множители, то получим два произведения: 220 = 2 · 2 · 5 · 11 и 600 = 2 · 2 · 2 · 3 · 5 · 5 . Общими в этих двух произведениях будут множители 2 , 2 и 5 . Это значит, что НОД (220 , 600) = 2 · 2 · 5 = 20 .

Пример 5

Найдите наибольший общий делитель чисел 72 и 96 .

Решение

Найдем все простые множители чисел 72 и 96 :

72 36 18 9 3 1 2 2 2 3 3

96 48 24 12 6 3 1 2 2 2 2 2 3

Общими для двух чисел простые множители: 2 , 2 , 2 и 3 . Это значит, что НОД (72 , 96) = 2 · 2 · 2 · 3 = 24 .

Ответ: НОД (72 , 96) = 24 .

Правило нахождения наибольшего общего делителя двух чисел основано на свойствах наибольшего общего делителя, согласно которому НОД (m · a 1 , m · b 1) = m · НОД (a 1 , b 1) , где m – любое целое положительное число.

Нахождение НОД трех и большего количества чисел

Независимо от количества чисел, для которых нам нужно найти НОД, мы будем действовать по одному и тому же алгоритму, который заключается в последовательном нахождении НОД двух чисел. Основан этот алгоритм на применении следующей теоремы: НОД нескольких чисел a 1 , a 2 , … , a k равен числу d k , которое находится при последовательном вычислении НОД (a 1 , a 2) = d 2 , НОД (d 2 , a 3) = d 3 , НОД (d 3 , a 4) = d 4 , … , НОД (d k - 1 , a k) = d k .

Пример 6

Найдите наибольший общий делитель четырех чисел 78 , 294 , 570 и 36 .

Решение

Введем обозначения: a 1 = 78 , a 2 = 294 , a 3 = 570 , a 4 = 36 .

Начнем с того, что найдем НОД чисел 78 и 294: d 2 = НОД (78 , 294) = 6 .

Теперь приступим к нахождению d 3 = НОД (d 2 , a 3) = НОД (6 , 570) . Согласно алгоритму Евклида 570 = 6 · 95 . Это значит, что d 3 = НОД (6 , 570) = 6 .

Найдем d 4 = НОД (d 3 , a 4) = НОД (6 , 36) . 36 делится на 6 без остатка. Это позволяет нам получить d 4 = НОД (6 , 36) = 6 .

d 4 = 6 , то есть, НОД (78 , 294 , 570 , 36) = 6 .

Ответ:

А теперь давайте рассмотрим еще один способ вычисления НОД для тех и большего количества чисел. Мы можем найти НОД, перемножив все общие простые множители чисел.

Пример 7

Вычислите НОД чисел 78 , 294 , 570 и 36 .

Решение

Произведем разложение данных чисел на простые множители: 78 = 2 · 3 · 13 , 294 = 2 · 3 · 7 · 7 , 570 = 2 · 3 · 5 · 19 , 36 = 2 · 2 · 3 · 3 .

Для всех четырех чисел общими простыми множителями будут числа 2 и 3 .

Получается, что НОД (78 , 294 , 570 , 36) = 2 · 3 = 6 .

Ответ: НОД (78 , 294 , 570 , 36) = 6 .

Нахождение НОД отрицательных чисел

Если нам приходится иметь дело с отрицательными числами, то для нахождения наибольшего общего делителя мы можем воспользоваться модулями этих чисел. Мы можем так поступить, зная свойство чисел с противоположными знаками: числа n и - n имеют одинаковые делители.

Пример 8

Найдите НОД отрицательных целых чисел − 231 и − 140 .

Решение

Для выполнения вычислений возьмем модули чисел, данных в условии. Это будут числа 231 и 140 . Запишем это кратко: НОД (− 231 , − 140) = НОД (231 , 140) . Теперь применим алгоритм Евклида для нахождения простых множителей двух чисел: 231 = 140 · 1 + 91 ; 140 = 91 · 1 + 49 ; 91 = 49 · 1 + 42 ; 49 = 42 · 1 + 7 и 42 = 7 · 6 . Получаем, что НОД (231 , 140) = 7 .

А так как НОД (− 231 , − 140) = НОД (231 , 140) , то НОД чисел − 231 и − 140 равен 7 .

Ответ: НОД (− 231 , − 140) = 7 .

Пример 9

Определите НОД трех чисел − 585 , 81 и − 189 .

Решение

Заменим отрицательные числа в приведенном перечне на их абсолютные величины, получим НОД (− 585 , 81 , − 189) = НОД (585 , 81 , 189) . Затем разложим все данные числа на простые множители: 585 = 3 · 3 · 5 · 13 , 81 = 3 · 3 · 3 · 3 и 189 = 3 · 3 · 3 · 7 . Общими для трех чисел являются простые множители 3 и 3 . Получается, что НОД (585 , 81 , 189) = НОД (− 585 , 81 , − 189) = 9 .

Ответ: НОД (− 585 , 81 , − 189) = 9 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Наибольший общий делитель и наименьшее общее кратное - ключевые арифметические понятия, которые позволяют без усилий оперировать обыкновенными дробями. НОК и чаще всего используются для поиска общего знаменателя нескольких дробей.

Основные понятия

Делитель целого числа X - это другое целое число Y, на которое X разделяется без остатка. К примеру, делитель 4 - это 2, а 36 - 4, 6, 9. Кратное целого X - это такое число Y, которое делится на X без остатка. К примеру, 3 кратно 15, а 6 - 12.

Для любой пары чисел мы можем найти их общие делители и кратные. К примеру, для 6 и 9 общим кратным является 18, а общим делителем - 3. Очевидно, что делителей и кратных у пар может быть несколько, поэтому при расчетах используется наибольший делитель НОД и наименьшее кратное НОК.

Наименьший делитель не имеет смысла, так как для любого числа это всегда единица. Наибольшее кратное также бессмысленно, так как последовательность кратных устремляется в бесконечность.

Нахождение НОД

Для поиска наибольшего общего делителя существует множество методов, самые известные из которых:

  • последовательный перебор делителей, выбор общих для пары и поиск наибольшего из них;
  • разложение чисел на неделимые множители;
  • алгоритм Евклида;
  • бинарный алгоритм.

Сегодня в учебных заведениях наиболее популярными являются методы разложения на простые множители и алгоритм Евклида. Последний в свою очередь используется при решении диофантовых уравнений: поиск НОД требуется для проверки уравнения на возможность разрешения в целых числах.

Нахождение НОК

Наименьшее общее кратное точно также определяется последовательным перебором или разложением на неделимые множители. Кроме того, легко найти НОК, если уже определен наибольший делитель. Для чисел X и Y НОК и НОД связаны следующим соотношением:

НОК (X,Y) = X × Y / НОД(X,Y).

Например, если НОД(15,18) = 3, то НОК(15,18) = 15 × 18 / 3 = 90. Наиболее очевидный пример использования НОК - поиск общего знаменателя, который и является наименьшим общим кратным для заданных дробей.

Взаимно простые числа

Если у пары чисел нет общих делителей, то такая пара называется взаимно простой. НОД для таких пар всегда равен единице, а исходя из связи делителей и кратных, НОК для взаимно простых равен их произведению. К примеру, числа 25 и 28 взаимно просты, ведь у них нет общих делителей, а НОК(25, 28) = 700, что соответствует их произведению. Два любых неделимых числа всегда будут взаимно простыми.

Калькулятор общего делителя и кратного

При помощи нашего калькулятора вы можете вычислить НОД и НОК для произвольного количества чисел на выбор. Задания на вычисление общих делителей и кратных встречаются в арифметике 5, 6 класса, однако НОД и НОК - ключевые понятия математики и используются в теории чисел, планиметрии и коммуникативной алгебре.

Примеры из реальной жизни

Общий знаменатель дробей

Наименьшее общее кратное используется при поиске общего знаменателя нескольких дробей. Пусть в арифметической задаче требуется суммировать 5 дробей:

1/8 + 1/9 + 1/12 + 1/15 + 1/18.

Для сложения дробей выражение необходимо привести к общему знаменателю, что сводится к задаче нахождения НОК. Для этого выберите в калькуляторе 5 чисел и введите значения знаменателей в соответствующие ячейки. Программа вычислит НОК (8, 9, 12, 15, 18) = 360. Теперь необходимо вычислить дополнительные множители для каждой дроби, которые определяются как соотношение НОК к знаменателю. Таким образом, дополнительные множители будут выглядеть как:

  • 360/8 = 45
  • 360/9 = 40
  • 360/12 = 30
  • 360/15 = 24
  • 360/18 = 20.

После этого умножаем все дроби на соответствующий дополнительный множитель и получаем:

45/360 + 40/360 + 30/360 + 24/360 + 20/360.

Такие дроби мы можем легко суммировать и получить результат в виде 159/360. Сокращаем дробь на 3 и видим окончательный ответ - 53/120.

Решение линейных диофантовых уравнений

Линейные диофантовы уравнения - это выражения вида ax + by = d. Если отношение d / НОД(a, b) есть целое число, то уравнение разрешимо в целых числах. Давайте проверим пару уравнений на возможность целочисленного решения. Сначала проверим уравнение 150x + 8y = 37. При помощи калькулятора находим НОД (150,8) = 2. Делим 37/2 = 18,5. Число не целое, следовательно, уравнение не имеет целочисленных корней.

Проверим уравнение 1320x + 1760y = 10120. Используем калькулятор для нахождения НОД(1320, 1760) = 440. Разделим 10120/440 = 23. В результате получаем целое число, следовательно, диофантово уравнение разрешимо в целых коэффициентах.

Заключение

НОД и НОК играют большую роль в теории чисел, а сами понятия широко используются в самых разных областях математики. Используйте наш калькулятор для расчета наибольших делителей и наименьших кратных любого количества чисел.

Одной из задач, вызывающих проблему у современных школьников, привыкших к месту и не к месту использовать калькуляторы, встроенные в гаджеты, является нахождение наибольшего общего делителя (НОД) двух и более чисел.

Невозможно решить никакую математическую задачу, если неизвестно, о чём собственно спрашивают. Для этого нужно знать, что означает то или иное выражение , используемое в математике.

Общие понятия и определения

Необходимо знать:

  1. Если некое число можно использовать для подсчёта различных предметов, например, девять столбов, шестнадцать домов, то оно является натуральным. Самым маленьким из них будет единица.
  2. Когда натуральное число делится на другое натуральное число, то говорят, что меньшее число - это делитель большего.
  3. Если два и более различных числа делятся на некое число без остатка, то говорят, что последнее будет их общим делителем (ОД).
  4. Самый большой из ОД именуется наибольшим общим делителем (НОД).
  5. В таком случае, когда у числа есть только два натуральных делителя (оно само и единичка), оно называется простым. Самое маленькое среди них - двойка, к тому же она и единственное чётное в их ряду.
  6. В случае если у двух чисел максимальным общим делителем является единица, то они будут взаимно простыми.
  7. Число, у которого больше чем два делителя, именуется составным.
  8. Процесс когда находятся все простые множители, которые при умножении между собой дадут в произведении начальное значение в математике называют разложением на простые множители. Причём одинаковые множители в разложении могут встречаться неоднократно.

В математике приняты следующие записи:

  1. Делители Д (45) = (1;3;5;9;45).
  2. ОД (8;18) = (1;2).
  3. НОД (8;18) = 2.

Различные способы найти НОД

Проще всего ответить на вопрос как найти НОД в том случае, когда меньшее число является делителем большего. Оно и будет в подобном случае наибольшим общим делителем.

Например, НОД (15;45) = 15, НОД (48;24) = 24.

Но такие случаи в математике являются весьма редкими, поэтому для того, чтобы находить НОД используются более сложные приёмы, хотя проверять этот вариант перед началом работы все же весьма рекомендуется.

Способ разложения на простые сомножители

Если необходимо найти НОД двух или более различных чисел , достаточно разложить каждое из них на простые сомножители, а затем произвести процесс умножения тех из них, которые имеются в каждом из чисел.

Пример 1

Рассмотрим, как находить НОД 36 и 90:

  1. 36 = 1*2*2*3*3;
  2. 90 = 1*2*3*3*5;

НОД (36;90) = 1*2*3*3 = 18.

Теперь посмотрим как находить то же самое в случае трёх чисел , возьмём для примера 54; 162; 42.

Как разложить 36 мы уже знаем, разберёмся с остальными:

  1. 162 = 1*2*3*3*3*3;
  2. 42 = 1*2*3*7;

Таким образом, НОД (36;162;42) = 1*2*3 = 6.

Следует заметить, что единицу в разложении писать совершенно необязательно.

Рассмотрим способ, как просто раскладывать на простые множители , для этого слева запишем необходимую нам цифру, а справа станем писать простые делители.

Разделять колонки можно, как знаком деления, так и простой вертикальной чертой.

  1. 36 / 2 продолжим наш процесс деления;
  2. 18 / 2 далее;
  3. 9 / 3 и ещё раз;
  4. 3 / 3 сейчас совсем элементарно;
  5. 1 - результат готов.

Искомое 36 = 2*2*3*3.

Евклидов способ

Этот вариант известен человечеству ещё со времён древнегреческой цивилизации, он во многом проще, и приписывается великому математику Евклиду, хотя весьма похожие алгоритмы применялись и ранее. Этот способ заключается в использовании следующего алгоритма , мы делим большее число с остатком на меньшее. Затем наш делитель делим на остаток и продолжаем так действовать по кругу пока не произойдёт деление нацело. Последнее значение и окажется искомым наибольшим общим делителем.

Приведём пример использования данного алгоритма :

попробуем выяснить какой НОД у 816 и 252:

  1. 816 / 252 = 3 и остаток 60. Сейчас 252 разделим на 60;
  2. 252 / 60 = 4 в остатке на этот раз окажется 12. Продолжим наш круговой процесс, разделим шестьдесят на двенадцать;
  3. 60 / 12 = 5. Поскольку на сей раз никакого остатка мы не получили, то у нас готов результат, двенадцать будет искомым для нас значением.

Итак, по завершении нашего процесса мы получили НОД (816;252) = 12.

Действия при необходимости определения НОД если задано более двух значений

Мы уже разобрались, что делать в случае, когда имеется два различных числа, теперь научимся действовать, если их имеется 3 и более .

При всей кажущейся сложности, данная задача проблем у нас уже не вызовет. Сейчас мы выбираем два любые числа и определяем искомое для них значение. Следующим шагом отыскиваем НОД у полученного результата и третьего из заданных значений. Затем снова действуем по уже известному нам принципу для четвёртого пятого и так далее.

Заключение

Итак, при кажущейся большой сложности поставленной перед нами изначально задачи, на самом деле все просто, главное уметь выполнять безошибочно процесс делений и придерживаться любого из двух описанных выше алгоритмов.

Хотя оба способа и являются вполне приемлемыми, в общеобразовательной школе гораздо чаще применяется первый способ . Это связано с тем, что разложение на простые множители понадобится при изучении следующей учебной темы - определение наибольшего общего кратного (НОК). Но все же стоит ещё раз заметить - применение алгоритма Евклида ни в коей мере не может считаться ошибочным.

Видео

С помощью видео вы сможете узнать, как найти наибольший общий делитель.

Понравилась статья? Поделитесь ей