Контакты

Развитие науки в античную эпоху и средние века. Характерные черты древнегреческой культуры

Обладание собственностью и возможность ра-ботать на себя и свою семью в определённой степени защищала че-ловека от эксплуатации со стороны частных лиц. Наличие полити-ческих и социальных прав обеспечивало гражданам достаточно ус-тойчивое общественное положение, открывало возможность прямого участия в политической деятельности и влияния на жизнь своего государства. Расцвету культуры способствовало также нали-чие политической свободы , отсутствие идеологического, духовного контроля над жизнью людей и их творческой деятельностью .

Наи-более тяжёлый и изнурительный труд был переложен на плечи ра-бов, что давало свободным людям время, необходимое для духовно-го их развития. Таким образом, весь уклад жизни античных обществ способствовал раскрытию творческих возможностей свободного полноправного человека.

К тому же в античных государствах была достигнута массовая грамотность населения. Это открывало возможность приобщения широких сло-ёв населения к политической деятельности, культуре и литературе.

Уровень развития культуры в Греции и её достижения в этой области были настолько велики, что некоторые специалисты полагают возможным говорить о «греческом чуде».

В Греции получила значительное развитие философия как осо-бая область познания мира, осмысления законов его существования и развития, сложился ряд философских направлений и школ, соз-данных различными выдающимися мыслителями. Ряд филосо-фов — Фалес, Гераклит, Анаксагор и др. — отстаивали идею первич-ности материального мира. Философ V-IV вв. до н. э. Демокрит по-лагал, что материальный мир состоит из мельчайших частиц — атомов, которые находятся в постоянном движении. Он также от-стаивал принцип причинности, помогающий осмыслить суть всего происходящего. В трудах Платона выдвигались положения о пер-вичности нематериального, идеального начала и вторичности ма-териального мира. Выдающийся философ-энциклопедист Аристо-тель в своём учении совмещал материалистический взгляд на мир с идеализмом, признавая наличие божественного начала, под влия-нием которого происходит развитие материи. Аристотель осущест-вил классификацию видов государственных устройств и произвёл анализ многих современных ему государств.

История

В Древней Греции возникла и получила значительное развитие историческая наука. Её основателем был Геродот, который, расска-зывая о Греко-персидских войнах, описал предшествовавшую им историю Греции и многих восточных стран. Фукидид — младший со-временник Геродота — умножил историю Пелопоннесской войны. Историк эллинистического времени Полибий оставил труд, посвя-щённый многовековой истории войн Рима за власть над Средизем-номорьем.

В трудах древнегреческих историков предпринимались попытки исследовать причины исторических событий, роль вы-дающихся личностей в истории, установить взаимосвязь различных событий и процессов. В трудах рим-ского историка Тита Ливия дан подроб-ный очерк истории Рима от основания го-рода до эпохи империи. В сочинениях Публия Корнелия Тацита, Гая Светония Транквилла раскрыты многие события времён империи, даны характеристики императорам. Большую известность в ми-ре приобрели сочинения философа Лу-ция Аннея Сенеки, императора Марка Ав-релия. Они были представителями стои-цизма — учения, отводившего важное место нравственному самосовершенствованию человека.

География

В античности совершаются первые дальние морские путешествия, открываются и заселяются ранее неведомые земли. В античное время лучше всего была изучена среди-земноморская область Земли: юг Европы, запад Азии, север Африки.

Театр

Древняя Греция

Значительный вклад Древняя Греция внесла в развитие мирового теат-рального искусства: греки создали театр как один из важнейших видов массовых зрелищ. В Греции театр являлся также важным средством формирования общественного гражданского сознания . Древнегреческие трагики Эсхил, Софокл и Еврипид и коме-диографы Аристофан и Менандр вошли в число выдающихся дра-матургов мира.

Древний Рим

Первые римские пьесы были подражанием греческим и носили драматический характер. В императорскую эпоху Древнего Рима население предпочитало смотреть комедии. Представления становились все более и более зрелищными: много музыки, танцев и спецэффектов. Некоторые актеры приобретали такую известность, что их поклонники не давали им проходу.

Ораторское искусство

Практическими потребностями античного общества была рож-дена теория красноречия, которая была необходима в политиче-ской борьбе, а также в судебных спорах. Греция и Рим оставили бо-гатое наследие в области ораторского искусства. Наиболее знаме-нитыми ораторами явились Демосфен в Афинах и Цицерон в Риме.

Литература

Художественная литература также является одним из достижений античной культуры. В Греции и Риме сложились различные литера-турные жанры — эпическая и лирическая поэзия, трагедия и комедия, роман, эпистолярный жанр и др. Многие произведе-ния писателей и поэтов античного времени представ-ляют собой выдающиеся образцы мировой литерату-ры — поэмы Гомера «Илиада» и «Одиссея», трагедии Эсхила, Софокла и Еврипида, комедии Аристофана и Плавта, роман Апулея «Золотой осёл», письма Мар-ка Туллия Цицерона и Луция Аннея Сенеки.

Среди наивысших достижений римской поэзии — творчество писателей и поэтов Вергилия, Горация, Ка-тулла, Овидия. Вергилий в поэме «Энеида» воспевал героическое прошлое Рима. Катулл и Овидий основ-ное внимание уделяли описанию человеческих чувств.

Живопись в античные времена

Портрет

см. Древнеримские игры и развлечения Материал с сайта

Введение

I. Крито-микенский период XXIII-XII вв. до н.э.

II. Гомеровский период XI-IX вв. до н.э.

III. Архейский период VIII-VI вв. до н.э.

IV. Классический период V-IV вв. до н.э.

V. Эллинистический период III-I в. до н.э.

VI. Греко-римский период I-IV вв. н.э.

Приложение: портреты ученых Древней Греции и Рима

Список использованной литературы

Введение

Веками классическая культура Древней Греции занимала воображение людей и очаровывает их до сих пор. Она была преемницей древневосточных культур, но приобрела новые, отличные от них черты и стала колыбелью европейской культуры. Одной из важнейших черт древнегреческой культуры является ее интерактивный характер (интеракция-взаимодействие). Во-первых, диффузия ахейской культуры (ахейцы прибыли в Грецию в XX в. до н.э.) и критской (ахейцы завоевали Крит в XVI н.э.), как результат- возникновение микенской культуры. Во-вторых, взаимодействие с дорийской культурой. В-третьих, оживленная морская торговля способствовала обогащению культуры.

Ранняя греческая наука зародилась на рубеже VII-VI вв. до н.э. в приморских городах малоазийской Ионии. В позднейшей литературе эта наука получила название науки «о природе». Истоками ранней греческой науки служат: 1)мифология (космогонические мифы); 2) данные непосредственных наблюдений и опыт многовековой человеческой практики; 3)эпическая поэзия, разрушавшая мифологическое восприятие мира и содержавшая позитивную картину мира; 4)восточные влияния в области научных знаний.

Возникновение ранней греческой науки было связано с общим духовным скачком, который переживала Греция в VI. до н.э. и который подчас именуется «греческим чудом». В течение короткого времени греки стали культурным лидером среди народов средиземноморского бассейна, опередив более древние и могущественный цивилизации Египта и Вавилона.

Феномен «греческого чуда» состоит в необычном расцвете в кругу древневосточных сакральных цивилизаций греческой культуры: эпоса, философии, театра, скульптуры. Некоторые зарубежные ученые рассматривают феномен «греческого чуда» как пример шизоидного развития всего человечества, дающего то всплески гениальности (Эллинский мир), то парадоксы умственного безумия, длившегося многие века (эпоха европейского средневековья). Дескать, это и объясняет наличие «славной плеяды» мыслителе и ученых из Элеи, Милета и Самоса.

Согласно марксистско-ленинской теории основой греческого феномена является способ жизнедеятельности античного общества: частная собственность, рабство, полисная демократия, отсутствие чиновничье-бюрократической элиты и жреческой касты, десакралитизация политической и культурной жизни, идеал бескорыстного созерцания, исповедовавшийся людьми, которые занимались духовным производством, созданием высокоразвитой греческой культуры. Именно эти факторы объясняют появление греческого типа культуры, переход от мифологического мышления к теоретическому, расцвет искусства.

Оценивая вклад греков в мировую науку достаточно сказать, что почти до середины XX в. мы учили геометрию по Евклиду, что основы механики заложены Архимедом, и астрономы-географы эпохи эллинизма впервые вычислили размер земного шара, предвосхитив гелиоцентрическую систему Коперника.

Наконец, художественное наследие античной Эллады имеет значение не только как историко-культурная, но и как живая, полная очарования и магического обаяния духовная сила.

Если же говорить о культуре Древнего Рима, то римляне, стоящие на более низкой ступени культурного развития, завоевав народы Греции, более продвинутые в культурном отношении, первоначально были обречены на роль подражателей и не могли соперничать с греками. Однако без стадии ученичества не мыслим последующий расцвет.

И позже знаменитейшие римские врачи, историки, риторы, филологи и юристы внесли свой неоценимый вклад в «копилку мудростей», которую мы называем наследием Античности!

Крито-микенский период XXIII - XII вв. до н.э.

— Наука

О выделении науки как самостоятельной ветви культуры в микенский период говорить еще рано, но уровень и объем технологических знаний был достаточно высок. Именно это позволило широко развить специализированное ремесленное производство.

Металлургия включала не только высокотемпературную плавку меди, литейщики работали с оловом, свинцом, серебром и золотом. Редкое самородное железо шло на изготовление ювелирных изделий. Греки умели изготавливать «электр» (сплав золота и серебра), знали приемы золочения бронзовых изделии.

Гончарные изделия свидетельствуют о свободе владения сложными термическими процессами, проводившимся в печах разной конструкции.

При обработке дерева применялись токарно-сверлильные приспособления. В строительстве использовали сложную систему катков и рычагов, об этом говорит исключительно точная установка массивных каменных плит сооружений XIX-XII вв. до н.э.

Водопроводы и закрытые водосборники были созданы в XVI-XII вв. до н.э. особенно показательно знание гидравлики и точность расчетов произведенных при сооружении систем водоснабжения в Микенах, Тиринфе и Афинах.

— Образование

В 3 - 2 тысячелетиях до н. э. в Греции, на Крите и некоторых других островах Эгейского моря возникла самобытная культура со своей письменностью. Письменность однако играла ограниченную роль. Жители Эллады прежде всего стали делать рисуночные записи. Каждый знак этого пиктографического письма обозначал целое понятие. Постепенно знаки упрощались, а часть их стала обозначать слоги. Такое слоговое (линейное) письмо сложилось к 1700 г. до н.э. и называлось письмом А. после 1500 г. до н.э. была выработана более удобная форма письменности – слоговое письмо Б. оно включало часть письма А, несколько десятков новых знаков и знаки древнейшего письма. От пиктографии к клинописи до слогового письма - такова эволюция этой письменности.

Письменностью владели жрецы, царская свита, вельможи и состоятельные граждане. Центры обучения писцов возникали при дворцах и храмах.

Крито-микенской (эгейской) культурой была заложена определенная традиция письма, принятая последующими цивилизациями. С этой традицией, например, связаны правила писать строки слева направо, сверху вниз, разделение слов знаками или пространством, выделение красных строк и заглавных букв.

Гомеровский период XI - IX вв. до н.э.

— Наука

О данном периоде известно в основном из повествований Гомера, именно потому он и получил название гомеровский.

Эпоха, описываемая Гомером, была во многом эпохой упадка. О том, что научный запас данного периода был достаточно ограничен, говорит небольшое знание географии самим Гомером. Так путь до неособенно далекой Италии и Сицилии у Гомера чрезвычайно долог и смертельно опасен.

Проблема начала науки. Существуют различные представления о времени возникновения науки. Одни считают, что наука возникла вместе с человеком – в те древние времена, когда он стал изготавливать первые орудия труда. Другая крайность – отнесение начала науки к тому этапу истории, когда появилось опытное естествознание (XV-XVII вв.). Многие исследователи полагают, что точного ответа на вопрос о времени возникновения науки не может быть, так как науку можно рассматривать в нескольких аспектах – и как способ познания мира, и как отрасль культуры, и как социальный институт, и т.д. В зависимости от того, какой аспект мы будем исследовать, нами будут получены разные точки отсчета времени рождения науки:

· как знания и деятельность по производству этих знаний – с начала человеческой истории;

· как форма общественного сознания и сфера культуры – в Древней Греции (VI-IV вв.);

· как социальный институт – в Новое время.

Разное время рождения имеют и конкретные науки: античность дала миру математику и астрономию, Новое время – физику, химию, биологию (классическое естествознание); ХIХ век – обществознание.

Наука – это сложное многогранное общественное явление, которое вне общества не могло ни возникнуть, ни развиваться. Наука появляется тогда, когда для этого создаются особые условия: более или менее четкий запрос на объективные знания о мире; социальная возможность выделения особой группы людей, чьей главной задачей становится ответ на этот запрос; накопление знаний, навыков, познавательных приемов и способов символического выражения и передачи информации и др.

Научные знания Древнего Востока. Возникновение первых форм научного знания связывают с древними цивилизациями Востока (Египет, Шумер, Вавилон, Индия, Китай). Именно здесь, в условиях преимущественно земледельческих культур, появились зачатки математических, астрономических и технических знаний. Астрономические знания позволяли рассчитывать движение планет и предвидеть возможные климатические изменения, математика была основой измерения земельных площадей, с помощью технических знаний строились различные крупные сооружения (пирамиды, дамбы, водораспределительные системы и др.). Эти цивилизации дали миру множество конкретных знаний, но они имели сугубо прикладной характер. Это были знания, необходимые для практической жизни, для религиозных ритуалов, всегда бывших в этих странах важнейшей частью повседневной жизни.



Научные знания передавались по принципу наследственного профессионализма – от старшего к младшему внутри касты жрецов. Знание считалось идущим от бога – покровителя этой касты. В силу этого оно было тайным, доступным только посвященным. По отношению к нему отсутствовала критическая позиция, так как не дело человека – исправлять богов. Такое знание невозможно было подвергнуть каким-либо существенным изменениям, оно функционировало как набор готовых рецептов. Решение частных задач не выводило на общие законы, отсутствовала система доказательств, что делало способы их решения профессиональной тайной, сводившей в конечном счете знание к магии. Таким образом, культура Древнего Востока, сделав немало открытий, не оставила систематизированного научного знания, можно говорить лишь о наличии разрозненных научных представлений.

Античная наука. Наука как самостоятельная отрасль культуры и теоретическое знание появилась в Древней Греции в VI-IV вв. д.н.э. В отличие от Древнего Востока здесь не было замкнутой касты жрецов и доступ к знаниям имел любой свободный человек. Большая часть знаний была открытой. Греки разделяли практические знания и умения и теоретические знания о мире, которые и были предметом науки. Научные знания в Древней Греции почти не были связаны с повседневной жизнью и ее запросами. Наукой там занимались из чистого интереса к истине. Научное познание отождествлялось с созерцанием природы. Знания о природе развивались в форме натурфилософии – чисто умозрительного учения об устройстве мироздания. Подлинная цель науки виделась в непосредственном усмотрении истины в природе, а всякие практические действия с природными объектами рассматривались как мешающие научному познанию. Причиной тому была такая особенность греческой цивилизации, как рабовладение. Оно обусловило пренебрежительное отношение свободных греков к физическому труду, а затем и ко всей практической деятельности и сформировало идеологию созерцательности, абстрактно-умозрительного отношения к действительности.

Отказ от материально-практического отношения к познанию породил идеализацию – умение мыслить понятиями, образовывать их, двигаться в плоскости «чистой» мысли. Ведь никакому практику никогда не придет в голову заниматься вопросами сущности мира, познания, истины, прекрасного, а без этого невозможна подлинная наука. Но решительный отказ от практической деятельности имел и обратную сторону – неприятие эксперимента как метода познания.

Именно древнегреческой культуре принадлежит несколько основополагающих идей, составивших основу науки и научного познания мира. Среди них – идея рождения мира из первоначального Хаоса и превращения его в разумно организованный и устроенный Космос. Превращение Хаоса в Космос связывалось с действием универсального космического закона – Логоса. Еще одна важная идея – представление о единстве микро- и макрокосмоса, подобии человека и мира. Отсюда вытекала возможность познания Космоса, так как подобное познается подобным.

Стремление понять изменчивое многообразие явлений приводило к поискам единого начала, «материальной причины» всех вещей. Поэтому одним из ключевых для древнегреческих мыслителей был вопрос о первоначале мира, из которого все возникает и в которое со временем все возвращается. Не случайно первые древнегреческие философы, представители милетской школы, начали с поисков этого первоначала: Фалес нашел его в воде, Анаксимен – в воздухе, Анаксимандр – в некоем вечном начале, которое он назвал апейроном. Со временем утвердилось представление о том, что все на свете состоит из четырех стихий (огня, земли, воды и воздуха), смешанных в определенной пропорции. Аристотель ввел пятую стихию – невидимый и неосязаемый эфир, заполняющий все пространство и являющийся первоосновой остальных элементов природы.

Древнегреческие мыслители стремились представить все мироздание в целом, совершенно не беспокоясь об отсутствии конкретных знаний о явлениях природы. Поэтому античная картина мира была целостной и наглядной , но наряду с гениальными догадками содержала немало выдумки и фантазии.

Постепенно в рамках натурфилософии возникли: геометрия Евклида , механика Архимеда , учение об атомах Демокрита , астрономия Птолемея . Уже в VI в. д.н.э. Пифагором была высказана мысль о шарообразности Земли, доказанная Аристотелем в IV в. д.н.э., а в 300 г. д.н.э. Эратосфен достаточно точно определил размеры земного шара. В античной картине мира утвердилась геоцентрическая система Птолемея: представление о том, что Земля – это шар, неподвижно висящий в центре Космоса, а вокруг него вращаются по идеальным круговым орбитам Луна, Солнце и пять известных тогда планет. Хотя уже в то время существовала более совершенная гелиоцентрическая система пифагорейцев.

Очень высокий статус у древних мыслителей имела математика, как наиболее причастная к постижению высшего бытия. По словам Платона, «никто, не познав числа, не может обрести истинного мнения о справедливом, прекрасном, благом и других подобных вещах». Одним из крупнейших достижений античности стала математическая программа, представленная Пифагором (около 500 г. д.н.э.) и позднее развитая Платоном. Самым ярким ее воплощением стала геометрия Евклида, его знаменитая книга «Начала» появилась около 300 г. д.н.э.

Другим важным достижением античности, оказавшей громадное влияние на все последующее развитие науки, стал атомизм ЛевкиппаиДемокрита (ок. 470 д.н.э.). Согласно им, все состоит из атомов и пустоты. Возникновение вещей есть соединение атомов, а уничтожение – это распад на части, в пределе – на атомы. Причиной образования вещей является вихрь, собирающий атомы вместе. В рамках атомизма было сделано несколько очень важных предположений. Среди них – идея пустоты, лежащая в основе концепции бесконечного пространства, и идея жесткого детерминизма, всеобщей причинной обусловленности. Все, что происходит в мире, для Демокрита не только имеет причину, но и существует по необходимости. Атомизм ориентировал ученых на поиск причин всех возможных изменений, на развитие представлений о структуре материи.

Огромное влияние на развитие античной науки имели труды Аристотеля (384 – 322 д.н.э.). С одной стороны, они еще близки к античной классике с ее стремлением к целостному осмыслению действительности. С другой стороны, в них отчетливо проявляются тенденции к выделению отдельных направлений исследования в относительно самостоятельные науки. Аристотель предметно дифференцировал научное знание, выделив: теоретические науки, занимающиеся познанием ради него самого (метафизика, математика, физика); практические науки, дающие руководящие идеи для поведения человека (экономика, политика, этика, риторика); творческие науки, имеющие целью достижение чего-либо прекрасного (эстетика, музыка, искусство). Сочинения Аристотеля охватывают все отрасли тогдашнего знания и включают: учение о форме и материи, причинах бытия, устройстве Космоса, движении и изменчивости, формах государства и др.

В качестве первоосновы мира он рассматривает четыре причины бытия: формальную, материальную, действующую и целевую. Материя является пассивным началом, материалом. Чтобы стать вещью, она должна соединиться с формой, идеальным началом, которое придает вещи конкретность. Двигаясь вглубь материи, вещества, можно прийти к первоматерии (эфиру), лишенной всяких свойств и качеств. Если первоматерия соединится с простейшими формами (теплое, холодное, сухое и влажное), образуются первоэлементы – огонь, земля, воздух и вода, сочетанием которых являются все окружающие предметы.

Движение у Аристотеля понималось в широком смысле – как возникновение и уничтожение тел, их рост и развитие, изменение качества, перемещение. Он считал, что у каждого тела есть предназначенное ему место, которое это тело стремится занять. Движение тел к своему месту – это естественное движение, происходящее само собой, без приложения сил. Все прочие движения требуют приложения сил и являются насильственными. Все движущееся приводится в движение другими телами, а первоисточником движения является Бог.

Учение Аристотеля о пространстве и времени основывается на идее непрерывности. Поэтому пространство у него – это протяженность тел, а время – их длительность. Он считал, что пространство и время существуют только вместе с материей, отрицал существование пустоты и полагал, что весь космос заполнен материей и не однороден.

Его бесспорным достижением стало создание формальной логики , поставившей науку на прочный фундамент логически обоснованного мышления с использованием понятийно-категориального аппарата. Ему же принадлежит утверждение порядка научного исследования , которое включает изучение истории вопроса, постановку проблемы, аргументы «за» и «против», обоснование решения. Аристотелю принадлежат труды, в которых изложены начала зоологии, анатомии и физиологии, содержащие очень точные наблюдения и целый ряд гениальных догадок. Природа у него не делилась на органическую и неорганическую, он пытался классифицировать все многообразие природы, в том числе ее живые формы (описал свыше пятисот видов растений и животных). Аристотелева программа биологии сохранилась практически до появления генетики. А его представления об устройстве подлунного и надлунного мира, о центральном положении Земли и ее неподвижности (Аристотель был сторонником геоцентрической системы Птолемея) были восприняты в дальнейшем средневековой философией и космологией. Его научный авторитет был настолько высок, что полученные им знания пользовались признанием более тысячи лет.

Нельзя не сказать еще об одном античном ученом, заложившем основы математической физики, – Архимеде (287-212 д.н.э.). Его труды по физике и механике были исключением из общих правил античной науки, так как он использовал свои знания для построения различных машин и механизмов. Ему приписывается изобретение винта Архимеда (машины для подъема воды), планетария, баллисты (военной метательной машины), крана для поднятия кораблей и др. Его работы сыграли основополагающую роль в возникновении таких разделов физики, как статика и гидростатика: он ввел в науку понятие центра тяжести тел, сформулировал закон рычага, принцип плавучести. Архимед был организатором инженерной обороны Сиракуз против римлян и погиб, защищая родной город.

Такова была античная наука, во многих своих положениях и выводах опровергнутая сегодня, но сыгравшая исключительно важную роль в становлении современной цивилизации. Выделение науки в самостоятельную сферу культуры, пусть еще не связанную с материальным производством, было важнейшим шагом в формировании активного, творчески преобразующего отношения человека к миру. Вся дальнейшая история науки была развитием и преобразованием античной науки.

Научные знания в Средние века. Эпоха Средних веков характеризуется в Европе закатом классической греко-римской культуры и резким усилением влияния церкви на жизнь общества. Важнейшей чертой мировоззрения в этот период становится теоцентризм – представление о Боге как единственной подлинной реальности. Главные усилия лучших умов были направлены на обоснование существования Бога, а высшей формой деятельности считалась та, которая была связана с религиозно-нравственной сферой бытия. Естественнонаучному познанию отводилась второстепенная роль. При этом все его выводы проходили через цензуру библейских концепций. Считалось, что «без веры нет знания, нет истины».

Поскольку наиболее почитаемым текстом было Священное писание, его истолкование было важнейшим методом познания мира. За ним по авторитету среди средневековых мыслителей шли сочинения отцов церкви и некоторых античных мыслителей, прежде всего Аристотеля. Ссылка на их сочинения служила самым веским аргументом в любом философском или научном споре. В связи с этим любимой формой научных сочинений в Средние века были комментарии, энциклопедии, а также сборники высказываний признанных мыслителей по разным вопросам.

Все эти особенности средневекового мировоззрения и познания привели к тому, что наука в то время носила исключительно служебный характер. Она могла только иллюстрировать истины Священного писания и в основном использовалась для решения чисто практических задач. Математика и астрономия, в частности, служили для вычисления дат религиозных праздников. Развивались такие специфические области знания, как астрология, алхимия, ятрохимия, натуральная магия. Они представляли собой промежуточное звено между ремеслом и натурфилософией и содержали в себе зародыш будущей экспериментальной науки в силу своей практической направленности. В рамках алхимии и ятрохимии были открыты способы получения серной, соляной, азотной кислот, селитры, сплавов ртути с металлами, многих лекарственных веществ. Огромную роль в утверждении экспериментального метода познания сыграли работы ученого монаха-францисканца XIII в. Р. Бэкона .

Период раннего Средневековья был для науки временем упадка. Сохранялись лишь жалкие остатки того конгломерата знаний, которым обладала античность. Очень многое погибло в период кризиса и разрушения Римской империи. Немало было целенаправленно уничтожено христианскими идеологами как противоречащее истинам новой религии.

В XII в. ситуация в средневековой науке стала меняться к лучшему. В научный обиход вошло все наследие Аристотеля, ставшее известным в результате контактов с арабским Востоком. Немалую роль в подъеме западноевропейской науки сыграли открывшиеся университеты (Парижский, Болонский, Кембриджский) – светские учебные заведения, в которых наряду с богословием преподавались математические и естественнонаучные знания.

Большое значение для дальнейшего развития науки имела и технологическая революция, вызвавшая динамичное развитие сферы материального производства. В ходе нее сформировалось уважительное отношение к физическому труду, к деятельности изобретателя и инженера, появилось стремление к совершенствованию техники, использованию ее для облегчения физического труда. Хотя средневековая наука, в отличие от античности, не предложила новых фундаментальных программ, она не ограничивалась только пассивным усвоением достижений античной науки. В этот период появились новые методы исследования, позволившие уйти от созерцательного отношения к действительности, характерного для античной эпохи, и подготовившие почву для экспериментальной науки Нового времени.

Понятием «античная наука» охватывается совокупность научно-философских идей, возникших в период с VI в. до Р.Х. до начала VI в. после Р.Х., от возникновения первых философских учений «о природе вещей» (ранней греческой натурфилософии) до падения Римской империи и закрытия Академии Платона в Афинах (529 г.).

В это время в Древней Греции и Древнем Риме наука поднимается на качественно новый уровень в сравнении с наукой Древнего Востока: впервые в истории появляется теоретическое знание, первые дедуктивные системы . Научное знание впервые становится предметом философской рефлексии: появляется и теория науки .

Новый уровень был достигнут благодаря возникновению философии , то есть мировоззрения, принципиально отличного от религиозно-мифологического взгляда на мир в цивилизациях Древнего Востока. Если в последних элементы научного знания были «вплетены» в сакрально-когнитивные комплексы, целиком подчинены религиозным или хозяйственно-государственным нуждам, то в античности появляется чистая наука , выступающая совершенно самостоятельно и свободно, вне связи с обязанностями чиновников и жрецов.

Математика становится чистой наукой об идеальных, неизменных, бестелесных сущностях, дедуктивной системой, выводящей и доказывающей свои положения из определений, аксиом и постулатов. Достигла вполне зрелого, развитого вида элементарная математика постоянных величин. На основе чистой математики становится воможным создание теоретической астрономии , в том числе геоцентрической системы мира, господствовавшей в Европе до XVI в.

В это время появляется натурфилософия , как исторически первая форма теоретического познания природы, формируются основные категории, принципы и программы научного естествознания, выделяется ряд конкретных областей научного исследования, от теории музыки, статики, гидростатики, ботаники и зоологии до грамматики, риторики, экономики, права и политики.

Об объёме научного знания античности косвенно свидетельствует тот факт, что александрийская библиотека в III-II вв. до Р.Х., эпохи расцвета античной науки, насчитывала около полумиллиона свитков.

Некоторые из крупнейших научных достижений античности:

атомистика Демокрита (V в. до Р.Х.), Эпикура (III в. до Р.Х.) и Лукреция (I в. до Р.Х.);

диалектика и теория идей Сократа и Платона (V-IV вв. до Р.Х.);

теория государства Платона и Аристотеля (IV в. до Р.Х.);

метафизика , физика , логика , психология , этика , экономика , поэтика Аристотеля (IV в. до Р.Х.);

геометрия и теория чисел , изложенные в форме дедуктивной научной системы в «Началах» Евклида (III в. до Р.Х.), но подготовленные в пифагорейском союзе и Академии Платона;

статика и гидростатика Архимеда (III в. до Р.Х.), его математические работы по вычислению площадей и объёмов;

– теория конических сечений Аполлония (III-II в.в. до Р.Х.);

– геоцентрическая астрономия Клавдия Птолемея (II в.), гелиоцентрическая система Аристарха Самосского (III в. до Р.Х.), работы Эратосфена (III в. до Р.Х.) по определению радиуса Земли и расстояния до Луны;

теория архитектуры Марка Витрувия (I в. до Р.Х.);

исторические труды Геродота и Фукидида (V-IV вв. до Р.Х.), Цезаря (I в. до Р.Х.), Тацита (I-II вв.) и др.;

медицина Гиппократа (V в. до Р.Х.) и Клавдия Галена (II в.).

– классическая система римского права , труды древнеримских юристов, и др.

Античная наука в общем и целом имеет теоретически-созерцательный характер. Это не означает, что она имеет чисто «умозрительный» или «спекулятивный» характер. Она опирается и на обыденный жизненный опыт , и на специальные систематические, внимательные, тонкие наблюдения ,и на обширный ремесленный опыт, но предпочтение отдаёт логике, рассуждению, легко воспаряя от отдельных фактов опыта к самым общим философским обобщениям. Идея «эксперимента» и тем более систематического экспериментирования как основы науки в античности отсутствует. Практически-ремесленная, производственная деятельность той эпохи не опирается на науку, если не считать единичных, исключительных случаев, подобных работе Архимеда по созданию оборонительных машин. Научно-философское знание не было направлено на практически-техническое применение. Наука и «искусство», познание и техника были отделены друг от друга и даже противопоставлены друг другу.

Указывая на причину подобного разделения науки и практики, нередко указывают на то, что в это время физическая, материальная, производственная деятельность во многом была уделом рабов, а потому для свободных людей, учёных – делом низким, презренным. Но у этого подхода имеются и веские философские основания. Цель науки – истина, цель искусства (техники) – польза. Наука стремится познать в этом изменчивом и многообразном мире нечто единое, вечное, неизменное, совершенное – истинноебытие , которое от человека совершенно не зависит. Искусство же как раз направлено на «текучее», несовершенное, изменчивое и изменяемое человеком. «Тэхне» и «механэ» – всё это сфера человеческой деятельности, его умений, которая касается удобства, пользы и развлечения, но не истины, не бытия. «Механические» изобретения – это не средство познания того, какова природа сама по себе, а её обман, обход, «хитрость» человека. Это – сфера искусственного, т.е. неестественного , того, чего в природе нет, – стало быть, никакого отношения к «бытию поистине» и тем самым к науке не имеет.

Античная наука, от арифметики до метафизики, рассматривает мир в аспекте вечности . Само слово «теория», как мы уже видели, происходит от греческого «теос» (Бог) и означает «созерцание божественного». Достижение истинного знания об истинном бытии рассматривается как конечная цель науки. Научное знание, как познание вечного и неизменного бытия, самодостаточно , имеет совершенно самостоятельную, более того – высшую ценность . Занятия наукой, познание истины, приобщение души к божественному, совершенному – лучшее, высшее, наиболее достойное занятие человека. Только в научной теории человек достигает конечной цели своего существования как разумное, мыслящее существо, достигает высшего возможного для человека блага. Теория есть высшее добро и высшее благо . По сравнению с тем благом, который даёт человеку само познание, все удобства и удовольствия, которые способны доставить ему техника и практическая деятельность, второстепенны.

Наиболее полное выражение античный идеал научности нашёл в учении Аристотеля, создателя первой теории науки.

Для Аристотеля «знать» – это значит: 1) в поисках причин отдельных явлений восходить ко всё более общим причинам и подняться до всеобщих , первых начал всего существующего; 2) остановиться на умозрительном «созерцании» этих начал; 3) в этом созерцании истинного, вечного и неизменного бытия достичь покоя, конечной цели, завершения процесса познания.

При таком понимании бытия и научного знания центр всей совокупности человеческого знания, главную и высшую науку образует метафизика .

Таким образом, античная наука ставит научному знанию предел. Бесконечно разнообразно лишь единичное, несущественное. Чем выше мы поднимаемся в науке в поисках причин вещей, тем меньше число начал. Число «первых начал» конечно и невелико. Их можно познать исчерпывающим образом. Подниматься «выше» и «дальше» или идти «глубже» в науке уже невозможно. Можно достичь и «крайней сферы» бытия, и высших пределов знания.

Федеральное агентство по образованию РФ

Вологодский государственный технический университет

Кафедра Г и ИГ


Реферат на тему:

Наука античности


Выполнила: студентка

группы ФЭГ-31 факультета

экологии Попова Е.А.

Проверила: ст. преподаватель

Ногина Ж.В.


Вологда 2011


Введение

Возникновение науки

Физика

Математика

Химия

Биология

Этика

Философия

География

Астрономия

Заключение

Список литературы


Введение


Что такое античная наука? Что такое наука вообще? Каковы основные признаки науки, отличающие ее от других видов материальной и духовной деятельности человека - ремесел, искусства, религии? Удовлетворяет ли этим признакам тот культурно-исторический феномен, который мы называем античной наукой? Если да, то была ли античная, в частности ранняя греческая наука, исторически первой формой науки или у нее были предшественники в странах с более древними культурными традициями - таких, как Египет, Месопотамия и т.д.? Если верно первое предположение, то каковы были преднаучные истоки греческой науки? Если же верно второе, то в каких отношениях находилась греческая наука с наукой своих старших восточных соседей? Имеется ли, наконец, принципиальное различие между античной наукой и наукой Нового времени?


Возникновение науки


По поводу самого понятия науки среди ученых-науковедов наблюдаются весьма большие расхождения. Можно указать две крайние точки зрения, находящиеся в радикальном противоречии друг с другом.

Согласно одной из них, наука в собственном смысле слова родилась в Европе лишь в XVI-XVII вв., в период, обычно именуемый великой научной революцией. Ее возникновение связано с деятельностью таких ученых, как Галилей, Кеплер, Декарт, Ньютон. Именно к этому времени следует отнести рождение собственно научного метода, для которого характерно специфическое соотношение между теорией и экспериментом. Тогда же была осознана роль математизации естественных наук - процесса, продолжающегося до нашего времени и теперь уже захватившего ряд областей знания, которые относятся к человеку и человеческому обществу. Античные мыслители, строго говоря, еще не знали эксперимента и, следовательно, не обладали подлинно научным методом: их умозаключения были в значительной степени продуктом беспочвенных спекуляций, которые не могли быть подвергнуты настоящей проверке. Исключение может быть сделано, пожалуй, лишь для одной математики, которая в силу своей специфики имеет чисто умозрительный характер и потому не нуждается в эксперименте. Что же касается научного естествознания, то его в древности фактически еще не было; существовали лишь слабые зачатки позднейших научных дисциплин, представлявшие собой незрелые обобщения случайных наблюдений и данных практики. Глобальные же концепции древних о происхождении и устройстве мира никак не могут быть признаны наукой: в лучшем случае их следует отнести к тому, что позднее получило наименование натурфилософии (термин, имеющий явно одиозный оттенок в глазах представителей точного естествознания).

Другая точка зрения, прямо противоположная только что изложенной, не накладывает на понятие науки сколько-нибудь жестких ограничений. По мнению ее адептов, наукой в широком смысле слова можно считать любую совокупность знаний, относящуюся к окружающему человека реальному миру. С этой точки зрения зарождение математической науки следует отнести к тому времени, когда человек начал производить первые, пусть даже самые элементарные операции с числами; астрономия появилась одновременно с первыми наблюдениями за движением небесных светил; наличие некоторого количества сведений о животном и растительном мире, характерном для данного географического ареала, уже может служить свидетельством первых шагов зоологии и ботаники. Если это так, то ни греческая и ни любая другая из известных нам исторических цивилизаций не может претендовать на то, чтобы считаться родиной науки, ибо возникновение последней отодвигается куда-то очень далеко, в туманную глубь веков.

Обращаясь к начальному периоду развития науки, мы увидим, что там имели место различные ситуации. Так, вавилонскую астрономию следовало бы отнести к разряду прикладных дисциплин, поскольку она ставила перед собой чисто практические цели. Проводя свои наблюдения, вавилонские звездочеты меньше всего интересовались устройством вселенной, истинным (а не только видимым) движением планет, причинами таких явлений, как солнечные и лунные затмения. Эти вопросы, по-видимому, вообще не вставали перед ними. Их задача состояла в том, чтобы вычислять наступление таких явлений, которые, согласно взглядам того времени, оказывали благоприятное или, наоборот, пагубное воздействие на судьбы людей и даже целых царств. Поэтому несмотря на наличие огромного количества наблюдений и на весьма сложные математические методы, с помощью которых эти материалы обрабатывались, вавилонскую астрономию нельзя считать наукой в собственном смысле слова.

Прямо противоположную картину мы обнаруживаем в Греции. Греческие ученые, сильно отстававшие от вавилонян в отношении знания того, что происходит на небе, с самого начала поставили вопрос об устройстве мира в целом. Этот вопрос интересовал греков не ради каких-либо практических целей, а сам по себе; его постановка определялась чистой любознательностью, которая в столь высокой степени была присуща жителям тогдашней Эллады. Попытки решения этого вопроса сводились к созданию моделей космоса, на первых порах имевших спекулятивный характер. Как бы ни были фантастичны эти модели с нашей теперешней точки зрения, их значение состояло в том, что они предвосхитили важнейшую черту всего позднейшего естествознания - моделирование механизма природных явлений.

Нечто аналогичное имело место и в математике. Ни вавилоняне, ни египтяне не проводили различия между точными и приближенными решениями математических задач. Любое решение, дававшее практически приемлемые результаты, считалось хорошим. Наоборот, для греков, подходивших к математике чисто теоретически, имело значение прежде всего строгое решение, полученное путем логических рассуждений. Это привело к разработке математической дедукции, определившей характер всей последующей математики. Восточная математика даже в своих высших достижениях, которые долгое время оставались для греков недоступными, так и не подошла к методу дедукции.

Итак, отличительной чертой греческой науки с момента ее зарождения была ее теоретичность, стремление к знанию ради самого знания, а не ради тех практических применений, которые могли из него проистечь. На первых этапах существования науки эта черта сыграла, бесспорно, прогрессивную роль и оказала большое стимулирующее воздействие на развитие научного мышления.

И вот, обратившись к античной науке в период ее наивысших достижений, можем ли мы найти в ней черту, принципиально отличающую ее от науки Нового времени? Да, можем. Несмотря на блестящие успехи античной науки эпохи Евклида и Архимеда, в ней отсутствовал важнейший ингредиент, без которого мы теперь не можем представить себе таких наук, как физика, химия, отчасти биология. Этот ингредиент - экспериментальный метод в том его виде, в каком он был создан творцами науки Нового времени - Галилеем, Бойлем, Ньютоном, Гюйгенсом. Античная наука понимала значение опытного познания, о чем свидетельствует Аристотель, а до него еще Демокрит. Античные ученые умели хорошо наблюдать окружающую природу. Они достигли высокого уровня в технике измерений длин и углов, о чем мы можем судить на основании процедур, разрабатывавшихся ими, например, для выяснения размеров земного шара (Эратосфен), для измерения видимого диска Солнца (Архимед) или для определения расстояния от Земли до Луны (Гиппарх, Посидоний, Птолемей). Но эксперимента как искусственного воспроизведения природных явлений, при котором устраняются побочные и несущественные эффекты и которое имеет своей целью подтвердить или опровергнуть то или иное теоретическое предположение, - такого эксперимента античность еще не знала. Между тем именно такой эксперимент лежит в основе физики и химии - наук, приобретших ведущую роль в естествознании Нового времени. Этим объясняется, почему широкая область физико-химических явлений осталась в античности во власти чисто качественных спекуляций, так и не дождавшись появления адекватного научного метода.

Одним из признаков настоящей науки является ее самоценность, стремление к знанию ради самого знания. Этот признак, однако, отнюдь не исключает возможности практического использования научных открытий. Великая научная революция XVI-XVII вв. заложила теоретические основы для последующего развития промышленного производства, направления нового на использование сил природы в интересах человека. С другой стороны, потребности техники явились в Новое время мощным стимулом научного прогресса. Подобное взаимодействие науки и практики становится с течением времени все более тесным и эффективным. В наше время наука превратилась в важнейшую производительную силу общества.

античная эпоха наука философия

В античную эпоху подобного взаимодействия науки и практики не было. Античная экономика, основанная на использовании ручного труда рабов, не нуждалась в развитии техники. По этой причине греко-римская наука, за немногими исключениями (к которым относится, в частности, инженерная деятельность Архимеда), не имела выходов в практику. С другой стороны, технические достижения античного мира - в области архитектуры, судостроения, военной техники - не находились ни в какой! связи с развитием науки. Отсутствие такого взаимодействия оказалось, в конечном счете, пагубным для античной науки.


Физика


Будучи по своему характеру более синтетической, нежели аналитической наукой, физика древней Греции и эллинистического периода являлась составной частью философии и занималась философской интерпретацией природных явлений. Вследствие этого метод и содержание физики носили качественно иной характер, чем возникшая в результате научной революции XVI и XVII в. в. классическая физика. Начинающаяся математизация физической стороны явлений послужила импульсом к созданию точной научной дисциплины. Однако специфический физический метод, который мог привести к формированию физики как самостоятельной науки, в античный период ещё не сложился. Эксперименты носили спорадический характер и служили более для демонстрации, нежели для получения физических фактов. Тексты, относящиеся к физическим явлениям, в латинском и арабском переводах сохранились приблизительно с 5 века до н.э., большей частью в позднем переложении. Наиболее важные произведения из области физических знаний принадлежат Аристотелю, Теофрасту, Евклиду, Герону, Архимеду, Птолемею и Плинию Старшему. История развития физики в античный период чётко разделяется на четыре периода.

Ионийский период (600-450 до нэ). Собственный практический опыт, а также заимствованный из древних культур привёл к возникновению материалистических идей о сущности и взаимосвязи явлений природы в составе общей науки и натурфилософии. Наиболее выдающимися представителями её были Фалес Милетский, Анаксимандр, Анаксимен, а также Гераклит Эфесский, работы которых содержали довольно скромные, но эмпирически точные сведения из области естествознания. Им были известны, например, свойства сжатия и разжижения воздуха, поднятие вверх нагретого воздуха, сила магнитного притяжения и свойства янтаря. Традиции натурфилософии были продолжены Эмпедоклом из Акраганта, доказавшим вещественность воздуха и создавшего теорию элементов. Левкипп и Демокрит обосновали анатомистическое учение, согласно которому вся множественность вещей зависит от положения, величины и формы составляющих их атомов в пустом пространстве (вакууме). Противниками натурфилософского учения были пифагорейцы с их представлениями о числе как основе всего сущего. Вместе с тем пифагорейцы ввели в Физику понятие меры и числа, развивали математическое учение о гармонии и положили начало основанным на опытах знаниям о зрительных восприятиях (оптика).

Афинский период (450-300 до нэ). Физика продолжала оставаться составной частью философии, хотя в новых общественных условиях в структуре философских знаний всё большее место стало занимать объяснение общественных явлений. Платон применил своё идеалистическое учение к таким физическим понятиям, как движение и гравитация. Но самым выдающимся представителем философии того периода был всё же Аристотель, который разделял взгляды Платона, но многим физическим явлениям давал материалистическое толкование. Его физические теории касаются почти всех областей данной науки. Особое значение имеет его теория движения (кинетика) представляющая собой начальную ступень классической динамики. Ему принадлежат труды: "Физика", "О небе", "Метеорология", "О возникновении и исчезновении", "Вопросы механики".

Эллинистический период (300 до н.э. - 150 н.э.) Физическое познание достигло своего расцвета. Центром физики стал Александрийский музей, первый настоящий исследовательский институт. Теперь на первый план выступила математическая интерпретация физических явлений; одновременно физика обратилась к постановке и решению практических задач. Физикой занимались либо математики (Евклид, Архимед, Птолемей), либо опытные практики и изобретатели (Ктесибий, Фалон, Герон). Более тесная связь с практикой приводила к физическим экспериментам, однако эксперимент ещё не был основой физических исследований. Наиболее значительная работа велась в это время в области механики. Архимед обосновал статику и гидростатику с математических позиций. Ктесибий, Филон Византийский и Герон обращались прежде всего к решению практических задач, используя при этом механические, гидравлические и пневматические явления. В области оптики Евклид развил теорию отражения, Герон вывел доказательство закона рефлексии, Птолемей экспериментальным путём измерил рефракцию.

Завершающий период (до 600 н.э.) Характеризуется не развитием традиций предшествующих этапов, а стагнацией и начинающимся упадком. Папп Александрийский пытался обобщить достижения в области механики, и лишь некоторые авторы, такие, как Лукреций, Плиний Старший, Витрувий, оставались верными традициям древне-греческой эллинистической науки.


Математика


В эпоху античности уровень развития математики был очень высок. Греки использовали накопленные в Вавилонии и Египте арифметические и геометрические знания, но достоверных данных, позволяющих точно определить их воздействие, а также влияние традиции критомикенской культуры, нет. История математики в Древней Греции, включая эпоху эллинизма, делится, как и физика, на четыре периода.

Ионийский период (600-450 до н.э.). В результате самостоятельного развития, а также на основе определённого запаса знаний, заимствованных у вавилонян и египтян, математика превратилась в особую научную дисциплину, основанную на дедуктивном методе. Согласно античному преданию, именно Фалес положил начало этому процессу. Однако истинная заслуга в создании Математики как науки принадлежит, видимо, Анаксагору и Гиппократу Хиосскому. Демокрит, наблюдая за игрой на музыкальных инструментах, установил, что высота тона звучащей струны изменяется в зависимости от её длины. Исходя из этого, он определил, что интервалы музыкальной гаммы могут быть выражены отношениями простейших целых чисел. Основываясь на анатомической структуре пространства, он вывел формулы для определения объёма конуса и пирамиды. Для математической мысли этого периода было характерно наряду с накоплением элементарных сведений по геометрии наличие зачатков теории двойственности, элементов стереометрии, формирование общей теории делимости и учения о величинах и измерениях.

Афинский период (450 - 300 до нэ). Развиваются специфические греческие математические дисциплины, наиболее значительной из которых было геометрия и алгебра. Целью геометризации математики, в сущности, был поиск решения чисто алгебраических задач (линейные и квадратные уравнения) с помощью наглядных геометрических образов. Он был обусловлен стремлением найти выход из затруднительного положения, в котором оказалась математика, вследствие открытия иррациональных величин. Было опровергнуто утверждение, что соотношения любых математических величин могут быть выражены через отношения целых чисел, т.е. через рациональные величины. Под влиянием сочинений Платона и его учеников Феодор Киренский и Теэтет занимались разработкой проблемы несоизмеримости отрезков, в то время как Евдокс Книдский сформулировал общую теорию отношений, которую можно было применять также и для иррациональных величин.

Эллинистический период (300 - 150 до нэ). В эпоху эллинизма, античная математика достигла высшей степени развития. В течение многих столетий основным центром математических исследований оставался Александрийский Мусейон. Около325 до нэ Евклид написал сочинение "Начала" (13 книг). Будучи последователем Платона он практически не рассматривал прикладные аспекты математики. Им уделял особое внимание Герон Александрийский. Только создание учёными западной Европы в 17 веке новой математики переменных величин оказалось по значению выше того вклада, который Архимед внёс в разработку математических проблем. Он приблизился к анализу бесконечно малых величин. Наряду с широким использованием математики в прикладных целях и применением её для разрешения проблем в области физики и механики вновь обнаружилась тенденция приписывать числа особые, сверхъестественные качества.

Завершающий период (150 - 60 до н.э.). К самостоятельным достижениям римской математики можно отнести лишь создание системы грубо приближенных вычислений и написание нескольких трактатов по геодезии. Наиболее значительный вклад в развитие античной математики на заключительном этапе внёс Диофант. Использовав, видимо, данные египетских и вавилонских математиков, он продолжил разработку методов алгебраических исчислений. Наряду с усилением религиозно-мистического интереса к числам продолжалась также разработка подлинной теории чисел. Этим занимался, в частности, Никомах Герасский. В целом в условиях острого кризиса рабовладельческого способа производства и перехода к феодальной формации в математике наблюдался регресс.


Химия


В древние времена химические знания были тесно связаны с ремесленным производством. Древние обладали познаниями в области извлечения металлов из руд, изготовления стекла и глазури, минеральных, растительных и животных красок, алкогольных напитков, косметических средств, лекарств и ядов. Они умели изготавливать сплавы, имитирующие золото, серебро, жемчуг и "искусственные" драгоценные камни из окрашенной в различные цвета расплавленной стеклянной массы, а также пурпурную краску на основе растительных красителей. Особенно этим славились египетские мастера. Теоретические обобщения, связанные с натурфилософскими рассуждениями о природе бытия, встречаются в трудах греческих философов, в первую очередь у Эмпедокла (учение о 4-х элементах), Левкиппа, Демокрита (учение об атомах) и Аристотеля (квалитативизм). В эллинистическом Египте 3-4 вв нэ прикладная Химия стала развиваться в русле возникшей алхимии, стремившейся к превращению неблагородных металлов в благородные.


Биология


В античную эпоху Биология как самостоятельная наука не существовала. Биологические знания концентрировались прежде всего в религиозных обрядах и медицине. Здесь заметную роль играло учение о 4-х соках. В гилозоизме существовали представления о наличии некой единой первичной формы всего многообразия жизненных проявлений. Вершиной античной биологии явились труды Аристотеля. В рамках его универсальной теологической картины мира энтелехия как активно формирующая сила определяла направление трансформации пассивной материи. В сочинениях Аристотеля нашли своё дальнейшее развитие представления об иерархии вещей, были отображены наблюдения автора о постепенном переходе в природе из неживого в живое, что оказало огромное влияние на последующие теории развития. Перипатетическая школа выдвинула в противоположность материалистическому направлению философии Демокрита своё органическое объяснение природы. Римская биология основывалась на выводах греческой науки и атомизме натурфилософии. Эпикур и его ученик Лукреций последовательно переносили материалистические воззрения на представления о жизни. Античная биология и медицина нашли своё завершение в трудах Галена. Его наблюдения, сделанные во время вскрытия домашних животных и обезьян, сохраняли значение на протяжении многих веков. Средневековая биология опиралась на античную биологию.


Этика


Названием и выделением в особую научную дисциплину Этика обязана Аристотелю, но основы её были заложены ещё Сократом. Первые этические размышления можно встретить уже в изречениях семи мудрецов, разумеется, без философских обоснований. Этико-религиозными вопросами основательно занимались Пифагор и его школа. Антидемократические аристократические позиции пифагорейцев разделяли Гераклит и элеаты. Удовольствия, возникающие из чувств, возбуждений, Демокрит считал сомнительными и относительными. Истинное счастье возникает при ровном и мирном настроении, которое обусловлено едва заметным движение атомов огня. Против отрицания обязательных нравственных норм было направлено учение Сократа о морали. Аристотель видел высшее счастье для каждого отдельного существа в проявлении его природы. Но природа, сущность человека, по Аристотелю, - это его разум, способность употребления разума есть, следовательно, добродетель, и использование разума само по себе приносит удовлетворение и наслаждение. В Риме (за исключением отдельных представителей научной этики - Цицерона, Сенеки, Марка Аврелия) признавалась преимущественно практически ориентированная этика.


Философия


Термин восходит, вероятно, к Гераклиту или Геродоту. Платон и Аристотель впервые стали пользоваться понятием Философия, близким к современному. Эпикур и стоики усматривали в ней не столько теоретическую картину мироздания, сколько всеобщее правило практической жизнедеятельности. Античная философия в целом отличалась созерцательностью, а её представители были, как правило, выходцами из имущих слоёв общества. Существовало два главных течения - материализм и идеализм. Для истории античной философии характерны теоретические расхождения, представленные определёнными школами или же отдельными философами. Такие, например, как противоречие во взглядах на бытие и становление (Перменид и Гераклит), на философию и антропологическую философию, на наслаждение и добродетель или аскетизм, на вопрос о соотношении формы и материи, на необходимость и свободу и другие. Дисциплина мышления, явившаяся результатом возникновения античной философии, стала и важной предпосылкой развития науки вообще. Непреходящей заслугой античной философии, в первую очередь философии материалистической и философии Аристотеля, является всеобъемлющее и систематическое обоснование самой философии как научной теории, развитие системы понятий, а также разработка всех основных философских проблем.


География


География была наукой, в наибольшей степени испытавшей непосредственное воздействие походов Александра Македонского. До этого географический кругозор греков еще не очень отличался от тех представлений об ойкумене, которые были изложены в книгах Геродота. Правда, в IV в. до н.э. путешествия в далекие страны и описания чужих земель становятся более частыми по сравнению с предшествующим столетием. В знаменитом "Аиа-базисе" Ксенофонта содержится много интересных данных по географии и этнографии Малой Азии и Армении. Ктесий Книдский, состоявший в течение 17 лет (415 - 399 гг.) врачом при персидском дворе, написал ряд исторических и географических сочинений, из которых, помимо описания Персии, особой популярностью в древности и в средние века пользовалось описание Индии, содержавшее массу баснословных сведений о природе и жителях этой страны. Позднее (около 330 г. до н.э.) некий Пифей из Массилии предпринял путешествие вдоль западных берегов Европы; миновав Гибралтар и открыв Бретонский выступ, он в конце концов достиг полумифической земли Фуле, которую некоторые исследователи отождествляют с теперешней Исландией, другие же - с Норвегией. Отрывки из сочинения Пифея приведены в трудах Полибия и Страбона.

И все же, когда Александр Македонский начал свои походы, и он, и его полководцы имели лишь очень слабое представление о странах, которые им предстояло завоевать. Армию Александра сопровождали "землемеры" или, точнее, "шагомеры", устанавливавшие, на основе подсчета шагов, пройденные расстояния, составлявшие описание маршрутов и наносившие на карту соответствующие территории. Когда Александр возвращался из Индии, часть войска была им отправлена морем, причем командир флота Неарх получил приказание исследовать береговую полосу Индийского океана. Покинув устье Инда, Неарх благополучно достиг Двуречья и написал отчет об этом плавании, которым позднее пользовались историографы походов Александра Арриаи и Страбон. Данные, накопленные во время походов Александра, позволили ученику Аристотеля Дикеарху из Мессаны составить карту всех известных тогда районов ойкумены.

Представление о шарообразности Земли, окончательно утвердившееся в Греции в эпоху Платона и Аристотеля, поставило перед греческой географией новые принципиальные задачи. Важнейшей из них была задача установления размеров земного шара. И вот Дикеарх предпринял первую попытку решить эту задачу с помощью измерений положения зенита на разных широтах (в районе Лисимахии у Дарданелл и у Ассуана в Египте), причем полученное им значение земной окружности оказалось равным 300 000 стадиев (т.е. около 50 000 км вместо истинного значения 40 000 км). Ширину ойкумены (с севера на юг) Дикеарх определил в 40 000 стадиев, а длину (с запада на восток) - 60 000.

Интересовался географией и другой представитель перипатетической школы - Стратон. Он высказал гипотезу, что Черное море было когда-то озером, а потом, соединившись со Средиземным морем, начало отдавать свои излишки Эгейскому морю (наличие течения в Дарданеллах было известным фактом, обсуждавшимся, в частности, Аристотелем; вспомним также историю постройки мостов через этот пролив для войска Ксеркса). Средиземное море, по мнению Стратона, также было ранее озером; когда оно прорвалось через узкий Гибралтарский пролив (называвшийся тогда Геркулесовыми столбами), уровень его снизился, обнажая побережье и оставляя раковины и отложения солей. Эта гипотеза потом оживленно обсуждалась Эратосфеном, Гиппархом и Страбоном. Высшие достижения александрийской географии связаны с именем Эратосфена из Кирены, в течение долгого времени (234-196 гг. до н.э.) стоявшего во главе александрийской библиотеки. Эратосфен был необычайно разносторонним человеком, оставившим после себя сочинения по математике, астрономии, истории (хронологии), филологии, этике и т.д.; однако его географические работы были, пожалуй, наиболее значительными.

Большой труд Эратосфена "География", состоявший из трех книг, не сохранился, но его содержание, а также полемические замечания к нему Гиппарха довольно полно изложены Страбоном. В первой книге этого сочинения Эратосфен дает очерк истории географии, начиная с древнейших времен. При этом он критически высказывается по поводу географических сведений, приводимых "непогрешимым" Гомером; рассказывает о первых географических картах Анаксимандра и Гекатея; выступает в защиту описания путешествия Пифея, неоднократно высмеивавшегося его современниками. Во второй книге Эратосфен приводит доказательства шарообразности Земли, упоминает о своем методе измерения размеров земного шара и развивает соображения об ойкумене, которую он считал островом, со всех сторон окруженным океаном.

На этом основании он впервые высказал предположение о возможности достичь Индию, плывя из Европы на запад. Третья книга представляла собой подробный комментарий к составленной Эратосфеном карте.

Метод, примененный Эратосфеном для определения окружности Земли, был подробно описан им в специальном сочинении; метод состоял в измерении длины тени, отбрасываемой гномоном в Александрии в тот самый момент, когда в Сиеие (Ассуане), находившейся приблизительно на том же меридиане, Солнце стоит прямо над головой. Угол между вертикалью и направлением на Солнце оказался (в Александрии) равным 1/50 полного круга. Считая расстояние между Александрией и Сиеной равным 5000 стадиев (немного менее 800 км), Эратосфен получил для окружности земного шара приближенное значение 250 000 стадиев. Более точные вычисления дали значение 252 000 стадиев, или 39 690 км, что всего лишь на 310 км отличается от истинной величины. Этот результат Эрастофена оставался непревзойденным вплоть до XVII в.


Астрономия


Знаменитый астроном II в. до н.э. Гиппарх написал сочинение, в котором подверг резкой критике "Географию" Эратосфена. Критика в основном касалась методов локализации географических объектов. Гиппарх считал недопустимым придавать серьезное значение свидетельствам путешественников или моряков об удаленности и ориентации этих объектов; он признавал лишь методы, основанные на точных объективных данных, к которым он относил высоту звезд над горизонтом, длину тени, отбрасываемой гномоном, различия во времени наступления лунных затмений и т.д. Введя в употребление сетку меридианов и параллелей в качестве основы для построенин географических карт, Гиппарх явился основоположником математической картографии.

На примере географии мы видим, что даже эта наука, ранее бывшая чисто описательной, подверглась в александрийскую эпоху процессу математизации. Еще в большей степени этот процесс был характерен для развития астрономии, механики, оптики. Поэтому мы вправе утверждать, что именно в эту эпоху математика, впервые стала призванной царицей наук. А следовательно, прежде чем переходить к другим наукам, целесообразно рассмотреть замечательные достижения эллинистической математики.

Заключение


Изучая развитие наук в период античности, видно, что практически во всех науках принимали активное участие и делали множество открытий и изобретений практически одни и те же люди - Аристотель, Демокрит, Герон, Евклид, Гераклит и многие другие. Это наводит на мысль о взаимосвязи фактически всех существующих на античном этапе наук, когда многие науки ещё не были обособлены и представляли собой ответвления друг от друга. Основой всего была Философия, к ней обращались, из неё исходили и на неё опирались все науки античности. Философская мысль была первоосновой.

Список литературы


1.Асмус В.Ф. Античная философия. - М.: Высшая школа, 1999.

2.Мамардашвили М.К. Лекции по античной философии. - М.: Аграф, 1997.

.Рожанский И.Д. Развитие естествознания в эпоху античности. Ранняя греческая наука о природе - М.: Наука, 1979.

.Щитов.Б.Б., Вронский С.А. Астрономия - это наука. - Изд: Институт Культуры ДонНТУ, 2011.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Понравилась статья? Поделитесь ей