Контакты

Периодический закон менделеева и его современная формулировка. Периодический закон и Периодическая система химических элементов Менделеева

Первый вариант Периодической таблицы элементов был опубликован Дмитрием Ивановичем Менделеевым в 1869 году и назывался «Опыт системы элементов».

Д.И. Менделеев расположил 63 известных в то время элемента в порядке возрастания их атомных масс и получил естественный ряд химических элементов , в котором он обнаружил периодическую повторяемость химических свойств. Данный ряд химических элементов теперь известен как Периодический закон (формулировка Д.И. Менделеева):

Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

Современная формулировка закона звучит так:

с войства химических элементов, простых веществ, а также состав и свойства соединений находятся в периодической зависимости от значений зарядов ядер атомов.

Графическим изображением периодического закона является периодическая таблица .

В ячейке каждого элемента указаны его важнейшие характеристики.

Периодическая таблица содержит группы и периоды.

Группа - столбец периодической системы, в котором располагаются химические элементы, обладающие химическим сходством вследствие идентичных электронных конфигураций валентного слоя.

Периодическая система Д.И. Менделеева содержит восемь групп элементов. Каждая группа состоит их двух подгрупп: главной (а) и побочной (б). В главной подгруппе содержатся s- и p- элементы, в побочной - d- элементы.

Названия групп:

I-a Щелочные металлы.

II-a Щелочноземельные металлы.

V-a Пниктогены.

VI-a Халькогены.

VII-a Галогены.

VIII-a Благородные (инертные) газы.

Период - это последовательность элементов, записанная в виде строки, расположенных в порядке увеличения зарядов их ядер. Номер периода соответсвует количеству электронных уровней в атоме.

Период начинается с щелочного металла (или водорода) и заканчивается благородным газом.

Параметр

По группе вниз

По периоду вправо

Заряд ядра

Увеличивается

Увеличивается

Число валентных электронов

Не меняется

Увеличивается

Число энергетических уровней

Увеличивается

Не меняется

Радиус атома

Увеличивается

Уменьшается

Электроотрицательность

Уменьшается

Увеличивается

Металлические свойства

Увеличиваются

Уменьшаются

Степень окисления в высшем оксиде

Не меняется

Увеличивается

Степень окисления в водородных соединениях (для элементов IV-VII групп)

Не меняется

Увеличивается


Современная периодическая таблица химических элементов Менделеева.

  • Физические и химические выражения порций, долей и количества вещества. Атомная единица массы, а.е.м. Моль вещества, постоянная Авогадро. Молярная масса. Относительные атомная и молекулярная масса вещества. Массовая доля химического элемента
  • Строение вещества. Ядерная модель строения атома. Состояние электрона в атоме. Заполнение электронами орбиталей, принцип наименьшей энергии, правило Клечковского, принцип Паули, правило Хунда
  • Вы сейчас здесь: Периодический закон в современной формулировке. Периодическая система. Физический смысл периодического закона. Структура периодической системы. Изменение свойств атомов химических элементов главных подгрупп. План характеристики химического элемента.
  • Периодическая система Менделеева. Высшие оксиды. Летучие водородные соединения. Растворимость, относительные молекулярные массы солей, кислот, оснований, оксидов, органических веществ. Ряды электроотрицательности, анионов, активности и напряжений металлов
  • Электрохимический ряд активности металлов и водорода таблица, электрохимический ряд напряжений металлов и водорода, ряд электроотрицательности химических элементов, ряд анионов
  • Химическая связь. Понятия. Правило октета. Металлы и неметаллы. Гибридизация электронных орбиталей. Валентные электроны, понятие валентности, понятие электроотрицательности
  • Виды химической связи. Ковалентная связь - полярная, неполярная. Характеристики, механизмы образования и виды ковалентной связи. Ионная связь. Степень окисления. Металлическая связь. Водородная связь.
  • Химические реакции. Понятия и признаки, Закон сохранения массы, Типы (соединения, разложения, замещения, обмена). Классификация: Обратимые и необратимые, Экзотермические и эндотермические, Окислительно-восстановительные, Гомогенные и гетерогенные
  • Важнейшие классы неорганических веществ. Оксиды. Гидроксиды. Соли. Кислоты, основания, амфотерные вещества. Важнейшие кислоты и их соли. Генетическая связь важнейших классов неорганических веществ.
  • Химия неметаллов. Галогены. Сера. Азот. Углерод. Инертные газы
  • Химия металлов. Щелочные металлы. Элементы IIА группы. Алюминий. Железо
  • Закономерности течения химических реакций. Скорость химической реакции. Закон действующих масс. Правило Вант-Гоффа. Обратимые и необратимые химические реакции. Химическое равновесие. Принцип Ле Шателье. Катализ
  • Растворы. Электролитическая диссоциация. Понятия, растворимость, электролитическая диссоциация, теория электролитическoй диссоциации, степень диссоциации, диссоциация кислот, оснований и солей, нейтральная, щелочная и кислая среда
  • Реакции в растворах электролитов + Окислительно-восстановительные реакции. (Реакции ионного обмена. Образование малорастворимого, газообразного, малодиссоциирующего вещества. Гидролиз водных растворов солей. Окислитель. Восстановитель.)
  • Классификация органических соединений. Углеводороды. Производные углеводородов. Изомерия и гомология органических соединений
  • Важнейшие производные углеводородов: спирты, фенолы, карбонильные соединения, карбоновые кислоты, амины, аминокислоты
  • Д.И. Менделеев сформулировал Периодический закон в 1869 году, в основе которого была одна из главнейших характеристик атома – атомная масса. Последующее развитие Периодического закона, а именно, получение большого экспериментальных данных, несколько изменило первоначальную формулировку закона, однако эти изменения не противоречат главному смыслу, заложенному Д.И. Менделеевым. Эти изменения только придали закону и Периодической системе научную обоснованность и подтверждение правильности.

    Современная формулировка Периодического закона Д.И. Менделеева такова: свойства химических элементов, а также свойства и формы соединений элементов находятся в периодической зависимости от величины заряда ядер их атомов.

    Структура Периодической системы химических элементов Д.И. Менделеева

    К настоящему мнению известно большое количество интерпретаций Периодической системы, но наиболее популярная – с короткими (малыми) и длинными (большими) периодами. Горизонтальные ряды называют периодами (в них расположены элементы с последовательным заполнением одинакового энергетического уровня), а вертикальные столбцы – группами (в них расположены элементы, имеющие одинаковое количество валентных электронов – химические аналоги). Так же все элементы можно разделить на блоки по по типу внешней (валентной) орбитали: s-, p-, d-, f-элементы.

    Всего в системе (таблице) 7 периодов, причем номер периода (обозначается арабской цифрой) равен числу электронных слоев в атоме элемента, номеру внешнего (валентного) энергетического уровня, значению главного квантового числа для высшего энергетического уровня. Каждый период (кроме первого) начинается s-элементом — активным щелочным металлом и заканчивается инертным газом, перед которым стоит p-элемент — активный неметалл (галоген). Если продвигаться по периоду слева направо, то с ростом заряда ядер атомов химических элементов малых периодов будет возрастать число электронов на внешнем энергетическом уровне, вследствие чего свойства элементов изменяются – от типично металлических (т.к. в начале периода стоит активный щелочной металл), через амфотерные (элемент проявляет свойства и металлов и неметаллов) до неметаллических (активный неметалл – галоген в конце периода), т.е. металлические свойства постепенно ослабевают и усиливаются неметаллические.

    В больших периодах с ростом заряда ядер заполнение электронов происходит сложнее, что объясняет более сложное изменение свойств элементов по сравнению с элементами малых периодов. Так, в четных рядах больших периодов с ростом заряда ядра число электронов на внешнем энергетическом уровне остается постоянным и равным 2 или 1. Поэтому, пока идет заполнение электронами следующего за внешним (второго снаружи) уровня, свойства элементов в четных рядах изменяются медленно. При переходе к нечетным рядам, с ростом величины заряда ядра увеличивается число электронов на внешнем энергетическом уровне (от 1 до 8), свойства элементов изменяются также, как в малых периодах.

    Вертикальные столбцы в Периодической системе – группы элементов со сходным электронным строением и являющимися химическими аналогами. Группы обозначают римскими цифрами от I до VIII. Выделяют главные (А) и побочные (B) подгруппы, первые из которых содержат s- и p-элементы, вторые – d – элементы.

    Номер А подгруппы показывает число электронов на внешнем энергетическом уровне (число валентных электронов). Для элементов В-подгрупп нет прямой связи между номером группы и числом электронов на внешнем энергетическом уровне. В А-подгруппах металлические свойства элементов усиливаются, а неметаллические – уменьшаются с возрастанием заряда ядра атома элемента.

    Между положением элементов в Периодической системе и строением их атомов существует взаимосвязь:

    — атомы всех элементов одного периода имеют равное число энергетических уровней, частично или полностью заполненных электронами;

    — атомы всех элементов А подгрупп имею равное число электронов на внешнем энергетическом уровне.

    Периодические свойства элементов

    Близость физико-химических и химических свойств атомов обусловлена сходством их электронных конфигураций, причем, главную роль играет распределение электронов по внешней атомной орбитали. Это проявляется в периодическом появлении, по мере увеличения заряда ядра атома, элементов с близкими свойствами. Такие свойства называют периодическими, среди которых наиболее важными являются:

    1. Количество электронов на внешней электронной оболочке (заселенность w ). В малых периодах с ростом заряда ядра w внешней электронной оболочки монотонно увеличивается от 1 до 2 (1 период), от 1 до 8 (2-й и 3-й периоды). В больших периодах на протяжении первых 12 элементов w не превышает 2, а затем до 8.

    2. Атомный и ионный радиусы (r), определяемые как средние радиусы атома или иона, находимые из экспериментальных данных по межатомным расстояниям в разных соединениях. По периоду атомный радиус уменьшается (постепенно прибавляющиеся электроны описываются орбиталями с почти равными характеристиками, по группе атомный радиус возрастает, поскольку увеличивается число электронных слоев (рис.1.).

    Рис. 1. Периодическое изменение атомного радиуса

    Такие же закономерности наблюдаются и для ионного радиуса. Следует заметить, что ионный радиус катиона (положительно заряженный ион) больше атомного радиуса, а тот в свою очередь, больше ионного радиуса аниона (отрицательно заряженный ион).

    3. Энергия ионизации (Е и) – количество энергии, необходимое для отрыва электрона от атома, т.е. энергия, необходимая для превращения нейтрального атома в положительно заряженный ион (катион).

    Э 0 — → Э + + Е и

    Е и измеряется в электронвольтах (эВ) на атом. В пределах группы Периодической системы значения энергии ионизации атомов уменьшаются с возрастанием зарядов ядер атомов элементов. От атомов химических элементов можно последовательно отрывать все электроны, сообщив дискретные значения Е и. При этом Е и 1 < Е и 2 < Е и 3 <….Энергии ионизации отражают дискретность структуры электронных слоев и оболочек атомов химических элементов.

    4. Сродство к электрону (Е е) – количество энергии, выделяющееся при присоединении дополнительного электрона к атому, т.е. энергия процесса

    Э 0 + → Э —

    Е е также выражается в эВ и, как и Е и зависит от радиуса атома, поэтому характер изменения Е е по периодам и группам Периодической системы близок характеру изменения атомного радиуса. Наибольшим сродством к электрону обладают p-элементы VII группы.

    5. Восстановительная активность (ВА) – способность атома отдавать электрон другому атому. Количественная мера – Е и. Если Е и увеличивается, то ВА уменьшается и наоборот.

    6. Окислительная активность (ОА) – способность атома присоединять электрон от другого атома. Количественная мера Е е. Если Е е увеличивается, то ОА также увеличивается и наоборот.

    7. Эффект экранирования – уменьшение воздействия на данный электрон положительного заряда ядра из-за наличия между ним и ядром других электронов. Экранирование растет с увеличением числа электронных слоев в атоме и уменьшает притяжение внешних электронов к ядру. Экранированию противоположен эффект проникновения , обусловленный тем, что электрон может находиться в любой точке атомного пространства. Эффект проникновения увеличивает прочность связи электрона с ядром.

    8. Степень окисления (окислительное число) – воображаемый заряд атома элемента в соединении, который определяется из предположения ионного строения вещества. Номер группы Периодической системы указывает высшую положительную степень окисления, которую могут иметь элементы данной группы в своих соединениях. Исключение – металлы подгруппы меди, кислород, фтор, бром, металлы семейства железа и другие элементы VIII группы. С ростом заряда ядра в периоде максимальная положительная степень окисления растет.

    9. Электроотрицательность, составы высших водородных и кислородных соединений, термодинамические, электролитические свойства и т.д.

    Примеры решения задач

    ПРИМЕР 1

    Задание Охарактеризуйте элемент (Z=23) и свойства его соединений (оксидов и гидроксидов) по электронной формуле: семейство, период, группа, число валентных электронов, электронно-графическая формула для валентных электронов в основном и возбужденном состоянии, основные степени окисления (максимальная и минимальная), формулы оксидов и гидроксидов.
    Решение 23 V 1s 2 2s 2 2p 6 3s 3 3p 6 3d 3 4s 2

    d-элемент, металл, находится в ;-м периоде, в V группе, В подгруппе. Валентные электроны 3d 3 4s 2 . Оксиды VO, V 2 O 3 , VO 2 , V 2 O 5 . Гидроксиды V(OH) 2 , V(OH) 3 , VO(OH) 2 , HVO 3 .

    Основное состояние

    Возбужденное состояние

    Минимальная степень окисления «+2», максимальная – «+5».

    В результате успешного освоения материала этой главы студент должен:

    знать

    • современную формулировку периодического закона;
    • связь структуры периодической системы и энергетической последовательности подуровней в многоэлектронных атомах;
    • определений понятий «период», «группа», «5-элементы», «р-эле- менты», «d- элементы», «/-элементы», «энергия ионизации», «сродство к электрону», «электроотрицательность», «радиус Ван-дер-Вааль- са», «кларк»;
    • основной закон геохимии;

    уметь

    Описывать структуру периодической системы в соответствии с правилами Клечковского;

    владеть

    Представлениями о периодическом характере изменения свойств атомов и химических свойств элементов, об особенностях длиннопериодного варианта периодической системы; о связи распространенности химических элементов с их положением в периодической системе, о макро- и микроэлементах в литосфере и живом веществе.

    Современная формулировка периодического закона

    Периодический закон - наиболее общий закон химии - был открыт Дмитрием Ивановичем Менделеевым в 1869 г. В то время строение атома еще не было известно. Д. И. Менделеев сделал свое открытие, основываясь на закономерном изменении свойств элементов при увеличении атомных масс.

    После открытия строения атомов стало ясно, что их свойства определяются строением электронных оболочек, которое зависит от общего числа электронов в атоме. Число электронов в атоме равно заряду его ядра. Поэтому современная формулировка периодического закона звучит следующим образом.

    Свойства химических элементов и образуемых ими простых и сложных вешеств находятся в периодической зависимости от заряда ядра их атомов.

    Значение периодического закона состоит в том, что он является главным инструментом систематизации и классификации химической информации, очень важным средством интерпретации, толкования химической информации, мощным инструментом предсказания свойств химических соединений и средством направленного поиска соединений с заранее заданными свойствами.

    Периодический закон не имеет математического выражения в виде уравнений, он находит свое отражение в таблице, которую называют периодической системой химических элементов. Существует много вариантов таблиц периодической системы. Наиболееширокое распространение получили длиннопериод- ный и короткопериодный варианты, помещенные на первой и второй цветных вклейках книги. Основной структурной единицей периодической системы является период.

    Периодом с номером п называют последовательность химических элементов, расположенных в порядке возрастания заряда ядра атома, которая начинается ^-элементами и заканчивается ^-элементами.

    В этом определении п - номер периода, равный главному квантовому числу для верхнего энергетического уровня в атомах всех элементов этого периода. В атомах s-элементов достраиваются 5-подуровни, в атомах р-элементов - соответственно р-подуровни. Исключение из приведенного выше определения составляет первый период, в котором нет p-элементов, так как на первом энергетическом уровне (п = 1) существует только 15-нодуровень. В периодической системе присутствуют также d-элементы , у которых достраиваются ^-подуровни, и /-элементы, у которых достраиваются /-подуровни.

    ОТКРЫТИЕ ПЕРИОДИЧЕСКОГО ЗАКОНА

    Периодический закон был открыт Д. И. Менделеевым в ходе работы над текстом учебника «Основы химии», когда он столкнулся с трудностями систематизации фактического материала. К середине февраля 1869 г., обдумывая структуру учебника, учёный постепенно пришёл к выводу, что свойства простых веществ и атомные массы элементов связывает некая закономерность.

    Открытие периодической таблицы элементов было совершено не случайно, это был результат огромного труда, длительной и кропотливой работы, которая была затрачена и самим Дмитрием Ивановичем, и множеством химиков из числа его предшественников и современников. «Когда я стал окончательно оформлять мою классификацию элементов, я написал на отдельных карточках каждый элемент и его соединения, и затем, расположив их в порядке групп и рядов, получил первую наглядную таблицу периодического закона. Но это был лишь заключительный аккорд, итог всего предыдущего труда…» - говорил учёный. Менделеев подчёркивал, что его открытие было итогом, завершившим собой двадцатилетнее размышление о связях между элементами, обдумывание со всех сторон взаимоотношений элементов.

    17 февраля (1 марта) рукопись статьи, содержащая таблицу под названием «Опыт системы элементов, основанной на их атомном весе и химическом сходстве», была закончена и сдана в печать с пометками для наборщиков и с датой «17 февраля 1869 г.». Сообщение об открытии Менделеева было сделано редактором «Русского химического общества» профессором Н. А. Меншуткиным на заседании общества 22 февраля (6 марта) 1869 г. Сам Менделеев на заседании не присутствовал, так как в это время по заданию Вольного экономического общества обследовал сыроварни Тверской и Новгородской губерний.

    В первом варианте системы элементы были расставлены учёным по девятнадцати горизонтальным рядам и по шести вертикальным столбцам. 17 февраля (1 марта) открытие периодического закона отнюдь не завершилось, а только началось. Его разработку и углубление Дмитрий Иванович продолжал еще в течение почти трёх лет. В 1870 г. Менделеев в «Основах химии» опубликовал второй вариант системы («Естественную систему элементов»): горизонтальные столбцы элементов-аналогов превратились в восемь вертикально расположенных групп; шесть вертикальных столбцов первого варианта превратились в периоды, начинавшиеся щелочным металлом и заканчивающиеся галогеном. Каждый период был разбит на два ряда; элементы разных вошедших в группу рядов образовали подгруппы.

    Сущность открытия Менделеева заключалась в том, что с ростом атомной массы химических элементов их свойства меняются не монотонно, а периодически. После определённого количества разных по свойствам элементов, расположенных по возрастанию атомного веса, свойства начинают повторяться. Отличием работы Менделеева от работ его предшественников было то, что основ для классификации элементов у Менделеева была не одна, а две - атомная масса и химическое сходство. Для того, чтобы периодичность полностью соблюдалась, Менделеев исправил атомные массы некоторых элементов, несколько элементов разместил в своей системе вопреки принятым в то время представлениям об их сходстве с другими, оставил в таблице пустые клетки, где должны были разместиться пока не открытые элементы.

    В 1871 г. на основе этих работ Менделеев сформулировал Периодический закон, форма которого со временем была несколько усовершенствована.

    Периодическая система элементов оказала большое влияние на последующее развитие химии. Она не только была первой естественной классификацией химических элементов, показавшей, что они образуют стройную систему и находятся в тесной связи друг с другом, но и явилась могучим орудием для дальнейших исследований. В то время, когда Менделеев на основе открытого им периодического закона составлял свою таблицу, многие элементы были еще неизвестны. Менделеев был не только убеждён, что должны существовать неизвестные еще элементы, которые заполнят эти места, но и заранее предсказал свойства таких элементов, основываясь на их положении среди других элементов периодической системы. В течение следующих 15 лет предсказания Менделеева блестяще подтвердились; все три ожидаемых элемента были открыты (Ga, Sc, Ge), что было величайшим триумфом периодического закона.

    Д.И. Менделеевым сдана в набор рукопись «Опыт системы элементов, основанной на их атомном весе и химическом сходстве» // Президентская библиотека // День в истории http://www.prlib.ru/History/Pages/Item.aspx?itemid=1006

    РУССКОЕ ХИМИЧЕСКОЕ ОБЩЕСТВО

    Русское химическое общество – научная организация, основанная при Санкт-Петербургском университете в 1868 г. и представлявшая собой добровольное объединение российских химиков.

    О необходимости создания Общества было заявлено на 1-м Съезде русских естествоиспытателей и врачей, состоявшемся в Санкт-Петербурге в конце декабря 1867 – начале января 1868 г. На Съезде было оглашено решение участников Химической секции:

    «Химическая секция заявила единодушное желание соединиться в Химическое общество для общения уже сложившихся сил русских химиков. Секция полагает, что это общество будет иметь членов во всех городах России, и что его издание будет включать труды всех русских химиков, печатаемые на русском языке».

    К этому времени уже были учреждены химические общества в нескольких европейских странах: Лондонское химическое общество (1841), Химическое общество Франции (1857), Немецкое химическое общество (1867); Американское химическое общество было основано в 1876 г.

    Устав Русского химического общества, составленный в основном Д. И. Менделеевым, был утверждён Министерством народного просвещения 26 октября 1868 г., а первое заседание Общества состоялось 6 ноября 1868 г. Первоначально в его состав вошли 35 химиков из Петербурга, Казани, Москвы, Варшавы, Киева, Харькова и Одессы. Первым Президентом РХО стал Н. Н. Зинин, секретарём – Н. А. Меншуткин. Члены общества платили членские взносы (10 руб. в год), приём новых членов осуществлялся только по рекомендации трёх действующих. В первый год своего существования РХО выросло с 35 до 60 членов и продолжало плавно расти в последующие годы (129 – в 1879 г., 237 – в 1889 г., 293 – в 1899 г., 364 – в 1909 г., 565 – в 1917 г.).

    В 1869 г. у РХО появился собственный печатный орган – «Журнал Русского химического общества» (ЖРХО); журнал выходил 9 раз в год (ежемесячно, кроме летних месяцев). Редактором ЖРХО с 1869 по 1900 был Н. А. Меншуткин, а с 1901 по 1930 – А. Е. Фаворский.

    В 1878 г. РХО объединилось с Русским физическим обществом (основано в 1872 г.) в Русское физико-химическое общество. Первыми Президентами РФХО были А. М. Бутлеров (в 1878–1882 гг.) и Д. И. Менделеев (в 1883–1887 гг.). В связи с объединением с 1879 г. (с 11-го тома) «Журнал Русского химического общества» был переименован в «Журнал Русского физико-химического общества». Периодичность издания составляла 10 номеров в год; журнал состоял из двух частей – химической (ЖРХО) и физической (ЖРФО).

    На страницах ЖРХО впервые были напечатаны многие труды классиков русской химии. Можно особо отметить работы Д. И. Менделеева по созданию и развитию периодической системы элементов и А. М. Бутлерова, связанные с разработкой его теории строения органических соединений; исследования Н. А. Меншуткина, Д. П. Коновалова, Н. С. Курнакова, Л. А. Чугаева в области неорганической и физической химии; В. В. Марковникова, Е. Е. Вагнера, А. М. Зайцева, С. Н. Реформатского, А. Е. Фаворского, Н. Д. Зелинского, С. В. Лебедева и А. Е. Арбузова в области органической химии. За период с 1869 по 1930 г. в ЖРХО было опубликовано 5067 оригинальных химических исследований, печатались также рефераты и обзорные статьи по отдельным вопросам химии, переводы наиболее интересных работ из иностранных журналов.

    РФХО стало учредителем Менделеевских съездов по общей и прикладной химии; три первых съезда прошли в С.-Петербурге в 1907, 1911 и 1922 гг. В 1919 г. издание ЖРФХО было приостановлено и возобновлено лишь в 1924 г.

    Понравилась статья? Поделитесь ей