Контакты

Что физическая химическая теории растворов. Физическая теория растворов



конце XIX века растворы считались физическими образованиями, в которых отсутствуют какие-либо взаимодействия между растворителем и растворенным веществом. Образование раствора объяснялось диспергированием частиц растворенного вещества в индифферентной среде растворителя. Основоположниками этих взглядов были такие известные ученые, как Я. Вант-Гофф, С. Арре-ниус и В. Оствальд. В 1887 году великий русский химик Д. И. Менделеев, опираясь на многочисленные экспериментальные данные, создал химическую (гидратную) теорию растворов. Основой этой теории была идея о химическом характере растворения. В растворе образуются соединения между растворенным веществом и растворителем, изменяющие свой состав с изменением температуры и концентрации. Эти соединения были названы Д. И. Менделеевым гидратами, или - сольватами. Образующиеся гидраты имеют различную прочность. Большинство из них неустойчиво и существует только в растворах. Однако некоторая часть гидратов является настолько прочными соединениями, что при выделении растворенного вещества из раствора вода входит в состав растущего кристалла в химически связанном виде. Такие кристаллы были названы кристаллогидратами, а входящая в их состав вода - кристаллизационной. Примерами кристаллогидратов являются CuS04 5Н20; Na2S04 ЮН20 и др. Прочность образующихся соединений определяется силами, действующими между растворителем и растворенным веществом. В настоящее время известна природа этих сил. СольватЫ (гидраты) образуются за счет ион-дипольного, диполь-ди-польного, донорно-акцепторного взаимодействия, за счет водородных связей, а также дисперсионного взаимодействия. Менделеев не отрицал роль физического фактора при образовании растворов. Он писал: «Две указанные стороны растворения (физическая и химическая) и гипотезы, до сих пор приложенные к рассмотрению растворов, хотя имеют отчасти различные исходные точки, со временем приведут к общей теории растворов, потому что одни общие законы управляют как физическими, так и химическими явлениями». Взгляды Д. И. Менделеева полностью подтвердились. В настоящее время процесс растворения рассматривают как физико-химический процесс, а растворы - как физико-химические системы. Химическая теория растворов Д. И. Менделеева позволяла объяснить наличие тепловых эффектов, возникающих при процессах растворения веществ. Тепловой эффект процесса растворения (ДНраств) можно представить в виде суммы теплоты, необходимой для разрушения кристаллической решетки вещества (ДНре1:1) и теплоты, выделяющейся в процессе сольватации (ДНсольват), т. е. AHp^ является значительной эндотермической величиной, а ДНС0ЛЬВ близкая к ней по значению экзотермическая величина. Исходя из этого, конечный знак теплового эффекта процесса растворения будет определяться величиной вклада каждого из этих параметров. При растворения эндотермичен. Это можно наблюдать, например, при растворении в воде нитратов калия и аммония, хлорида калия и др. При процесс растворения экзотермичен. Примером этого является растворение в воде хлоридов кальция и магния, гидроксидов натрия и калия и др. Итак, знак теплового эффекта определяется природой растворенного вещества и растворителя, глубиной их взаимодействия между собой. Наличием химического взаимодействия между компонентами объясняются и объемные эффекты при растворении. Так, при растворении 1 л этилового спирта в 1 л воды объем образующегося раствора оказывается равным не 2 л, а 1,93 л. В этом случае уменьшение объема обусловлено, в основном, образованием водородных связей между гидроксильными группами воды и спирта.

РАСТВОРЫ

Общие сведения

Растворы - компонентами.

«растворитель» и «растворенное вещество» полярные неполярные



гидрофильные (притягивающие воду) и гидрофобные дифильными

Теории растворов

Физическая теория растворов.

идеальными

Химическая теория растворов.

Химическая, или сольватная, теория растворов была предложена в 1887 г. Д.И. Менделеевым, который установил, что в реальном растворе присутствуют не только индивидуальные компоненты, но и продукты их взаимодействия. Исследования водных растворов серной кислоты и этилового спирта, проведенные Д.И. Менделеевым, легли в основу теории, суть которой заключается в том, что между частицами растворенного вещества и молекулами растворителя происходят взаимодействия, в результате которых образуются нестойкие соединения переменного состава, называемые сольватами или гидратами , если растворителем является вода. Главную роль в образовании сольватов играют непрочные межмолекулярные силы, в частности, водородная связь.

В этой связи следует принять следующую трактовку понятия «раствор»:

Раствором называется гомогенная система переменного состава, состоящая из двух и более компонентов и продуктов их взаимодействия.

Из данного определения следует, что растворы занимают промежуточное положение между химическими соединениями и смесями. С одной стороны, растворы однородны, что позволяет рассматривать их как химические соединения. С другой стороны, в растворах нет строгого стехиометрического соотношения между компонентами. Кроме того, растворы можно разделить на составные части (например, при упаривании раствора NaCl можно выделить соль в индивидуальном виде).

Связь между различными способами

Кислоты и основания

Несмотря на то, что понятия «кислота» и «основание» широко используются для описания химических процессов, единого подхода к классификации веществ с точки зрения отнесения их к кислотам или основаниям нет. Существующие в настоящее время теории (ионная теория С. Аррениуса , протолитическая теория И. Бренстеда и Т. Лоури и электронная теория Г. Льюиса ) имеют определенные ограничения и, таким образом, применимы лишь в частных случаях. Остановимся подробнее на каждой из этих теорий.

Теория Аррениуса.

В ионной теории Аррениуса понятия «кислота» и «основание» тесно связаны с процессом электролитической диссоциации:

Кислотой является электролит, диссоциирующий в растворах с образованием ионов Н + ;

Основаниемявляется электролит, диссоциирующий в растворах с образованием ионовОН - ;

Амфолитом (амфотерным электролитом) является электролит, диссоциирующий в растворах с образованием как ионовН + , так и ионов ОН - .

Например:

НА ⇄ Н + + А - nH + +MeO n n - ⇄Ме(ОН) n ⇄Ме n + +nОН -

В соответствии с ионной теорией кислотами могут быть как нейтральные молекулы, так и ионы, например:

HF ⇄ H + + F -

H 2 PO 4 - ⇄ H + + HPO 4 2 -

NH 4 + ⇄H + +NH 3

Аналогичные примеры можно привести и для оснований:

КОН К + + ОН -

- ⇄Al(OH) 3 + ОН -

+ ⇄Fe 2+ + ОН -

К амфолитам относят гидроксиды цинка, алюминия, хрома и некоторые другие, а также аминокислоты, белки, нуклеиновые кислоты.

В целом, кислотно-основное взаимодействие в растворе сводится к реакции нейтрализации:

H + + ОН - H 2 O

Однако, ряд экспериментальных данных показывает ограниченность ионной теории. Так, аммиак, органические амины, оксиды металлов типа Na 2 O, СаО, анионы слабых кислот и т.д. в отсутствии воды проявляют свойства типичных оснований, хотя не имеют в своем составе гидроксид-ионов.

С другой стороны, многие оксиды (SO 2 , SO 3 , Р 2 О 5 и т.д.), галогениды, галогенангидриды кислот, не имея в своем составе ионов водорода, даже в отсутствии воды проявляют кислотные свойства, т.е. нейтрализуют основания.

Кроме того, поведение электролита в водном растворе и в неводной среде может быть противоположным.

Так, CH 3 COOH в воде является слабой кислотой:

CH 3 COOH⇄CH 3 COO - +H + ,

а в жидком фтороводороде проявляет свойства основания:

HF + CH 3 COOH⇄CH 3 COOH 2 + +F -

Исследования подобных типов реакций и в особенности реакций, протекающих в неводных растворителях, привели к созданию более общих теорий кислот и оснований.

Теория Бренстеда и Лоури.

Дальнейшим развитием теории кислот и оснований явилась предложенная И. Бренстедом и Т. Лоурипротолитическая (протонная) теория. В соответствии с этой теорией:

Кислотой называют любое вещество, молекулы (или ионы) которого способны отдавать протон, т.е. быть донором протона;

Основанием называют любое вещество, молекулы (или ионы) которого способны присоединять протон, т.е. быть акцептором протона;

Таким образом, понятие основания значительно расширяется, что подтверждается следующими реакциями:

ОН - + Н + Н 2 О

NH 3 +H + NH 4 +

H 2 N-NH 3 + +H + H 3 N + -NH 3 +

По теории И. Бренстеда и Т. Лоури кислота и основание составляют сопряженную пару и связаны равновесием:

КИСЛОТА ⇄ ПРОТОН + ОСНОВАНИЕ

Поскольку реакция переноса протона (протолитическая реакция) обратима, причем в обратном процессе тоже передается протон, то продукты реакции являются друг по отношению к другу кислотой и основанием. Это можно записать в виде равновесного процесса:

НА + В ⇄ ВН + + А - ,

где НА – кислота, В – основание, ВН + – кислота, сопряженная с основанием В, А - – основание, сопряженное с кислотой НА.

Примеры.

1) в реакции:

HCl+OH - ⇄Cl - +H 2 O,

HCl и H 2 O – кислоты, Cl - и OH - – соответствующие сопряженные с ними основания;

2) в реакции:

HSO 4 - +H 2 O⇄SO 4 2 - +H 3 O + ,

HSO 4 - и H 3 O + – кислоты, SO 4 2 - и H 2 O – основания;

3) в реакции:

NH 4 + +NH 2 - ⇄ 2NH 3 ,

NH 4 + – кислота, NH 2 - – основание, а NH 3 выступает в роли как кислоты (одна молекула), так и основания (другая молекула), т.е. демонстрирует признаки амфотерности – способности проявлять свойства кислоты и основания.

Такой способностью обладает и вода:

2Н 2 О ⇄ Н 3 О + + ОН -

Здесь одна молекула Н 2 О присоединяет протон (основание), образуя сопряженную кислоту – ион гидроксония Н 3 О + , другая отдает протон (кислота), образуя сопряженное основание ОН - . Этот процесс называется автопротолизом .

Из приведенных примеров видно, что в отличие от представлений Аррениуса, в теории Бренстеда и Лоури реакции кислот с основаниями не приводят к взаимной нейтрализации, а сопровождаются образованием новых кислот и оснований.

Необходимо также отметить, что протолитическая теория рассматривает понятия «кислота» и «основание» не как свойство, но как функцию, которую выполняет рассматриваемое соединение в протолитической реакции. Одно и то же соединение может в одних условиях реагировать как кислота, в других – как основание. Так, в водном растворе СН 3 СООН проявляет свойства кислоты, а в 100%-й H 2 SO 4 – основания.

Однако, несмотря на свои достоинства, протолитическая теория, как и теория Аррениуса, не применима к веществам, не содержащим атомов водорода, но, в тоже время, проявляющим функцию кислоты: галогенидам бора, алюминия, кремния, олова.

Теория Льюиса.

Иным подходом к классификации веществ с точки зрения отнесения их к кислотам и основаниям явилась электронная теория Льюиса. В рамках электронной теории:

кислотой называют частицу (молекулу или ион), способную присоединять электронную пару (акцептор электронов);

основанием называют частицу (молекулу или ион), способную отдавать электронную пару (донор электронов).

Согласно представлениям Льюиса, кислота и основание взаимодействуют друг с другом с образованием донорно-акцепторной связи. В результате присоединения пары электронов у атома с электронным дефицитом возникает завершенная электронная конфигурация - октет электронов. Например:

Аналогичным образом можно представить и реакцию между нейтральными молекулами:

Реакция нейтрализации в терминах теории Льюиса рассматривается как присоединение электронной пары гидроксид-иона к иону водорода, предоставляющему для размещения этой пары свободную орбиталь:

Таким образом, сам протон, легко присоединяющий электронную пару, с точки зрения теории Льюиса, выполняет функцию кислоты. В этой связи, кислоты по Бренстеду могут рассматриваться как продукты реакции между льюисовскими кислотами и основаниями. Так, HCl является продуктом нейтрализации кислоты H + основанием Cl - , а ион H 3 O + образуется в результате нейтрализации кислоты H + основанием H 2 O.

Реакции между кислотами и основаниями Льюиса также иллюстрируют следующие примеры:

К основаниям Льюиса также относят галогенид-ионы, аммиак, алифатические и ароматические амины, кислородсодержащие органические соединения типа R 2 CO, (где R- органический радикал).

К кислотам Льюиса относят галогениды бора, алюминия, кремния, олова и других элементов.

Очевидно, что в теории Льюиса понятие «кислота» включает в себя более широкий круг химических соединений. Это объясняется тем, что по Льюису отнесение вещества к классу кислот обусловлено исключительно строением его молекулы, определяющим электронно-акцепторные свойства, и не обязательно связано с наличием атомов водорода. Льюисовские кислоты, не содержащие атомов водорода, называют апротонными .

РАСТВОРЫ

Общие сведения

Растворы - это гомогенные системы переменного состава, состоящие из двух и более веществ, называемых компонентами. По агрегатному состоянию растворы могут быть газообразными (воздух), жидкими (кровь, лимфа) и твердыми (сплавы). В медицине наибольшее значение имеют жидкие растворы, которые играют исключительную роль в жизнедеятельности живых организмов. С образованием растворов связаны процессы усвоения пищи и выведения из организма продуктов жизнедеятельности. В форме растворов вводится большое количество лекарственных препаратов.

Для качественного и количественного описания жидких растворов используются термины «растворитель» и «растворенное вещество» , хотя в некоторых случаях такое разделение является достаточно условным. Так, медицинский спирт (96% раствор этанола в воде) скорее следует рассматривать как раствор воды в спирте. Все растворители делятся на неорганические и органические. Важнейшим неорганическим растворителем (а в случае биологических систем – единственным) является вода. Это обусловлено такими свойствами воды, как полярность, низкая вязкость, склонность молекул к ассоциации, относительно высокие температуры кипения и плавления. Растворители органической природы разделяют на полярные (спирты, альдегиды, кетоны, кислоты) и неполярные (гексан, бензол, четыреххлористый углерод).

Процесс растворения в равной степени зависит как от природы растворителя, так и от свойств растворенного вещества. Очевидно, что способность образовывать растворы выражена у разных веществ по-разному. Одни вещества могут смешиваться друг с другом в любых количествах (вода и этанол), другие – в ограниченных (вода и фенол). Однако, следует помнить: абсолютно нерастворимых веществ не существует!

Склонность вещества растворяться в том или ином растворителе можно определить, используя простое эмпирическое правило: подобное растворяется в подобном. Действительно, вещества с ионным (соли, щелочи) или полярным (спирты, альдегиды) типом связи хорошо растворимы в полярных растворителях, например, в воде. И наоборот, растворимость кислорода в бензоле на порядок выше чем в воде, так как молекулы O 2 и C 6 H 6 неполярны.

Степень сродства соединения к определенному типу растворителя можно оценить, анализируя природу и количественное соотношение входящих в его состав функциональных групп, среди которых выделяют гидрофильные (притягивающие воду) и гидрофобные (отталкивающие воду). К гидрофильным относят полярные группы, такие как гидроксильная (-OH), карбоксильная (-COOH), тиольная (-SH), амино (-NH 2). Гидрофобными считают неполярные группы: углеводородные радикалы алифатического (-CH 3 , -C 2 H 5) и ароматического (-C 6 H 5) рядов. Соединения, имеющие в своем составе как гидрофильные, так и гидрофобные группы, называют дифильными . К таким соединениям относят аминокислоты, белки, нуклеиновые кислоты.

Теории растворов

В настоящее время известны две основные теории растворов: физическая и химическая.

Физическая теория растворов.

Физическая теория растворов была предложена С. Аррениусом (1883) и Я. Г. Вант-Гоффом (1885). В данной теории растворитель рассматривается как химически инертная среда, в которой равномерно распределены частицы (молекулы, ионы) растворенного вещества. При этом предполагается отсутствие межмолекулярного взаимодействия как между частицами растворенного вещества, так и между молекулами растворителя и частицами растворенного вещества. Однако впоследствии выяснилось, что условиям данной модели удовлетворяет поведение лишь малой группы растворов, которые были названы идеальными . В частности, идеальными растворами можно считать газовые смеси и очень сильно разбавленные растворы неэлектролитов.

Лекция 1.

«ПОНЯТИЕ «РАСТВОР». ХИМИЧЕСКАЯ ТЕОРИЯ РАСТВОРОВ»

Растворы имеют важное значение в жизни и практической деятельности человека. Растворами являются все важнейшие физиологические жидкости (кровь, лимфа и т.д.). Организм – сложная химическая система, и подавляющее большинство химических реакций в организме происходит в водных растворах. Именно по этой причине человеческий организм на 70 % состоит из воды, а сильное обезвоживание организма наступает быстро и является очень опасным состоянием.

Многие технологические процессы, например получение соды или азотной кислоты, выделение и очистка редких металлов, отбеливание и окрашивание тканей, протекают в растворах.

Чтобы понять механизм многих химических реакций, необходимо изучить процессы, протекающие в растворах.

Понятие «раствор». Виды растворов

Раствор – твердая, жидкая или газообразная гомогенная система , состоящая из двух или более компонентов.

Гомогенная система состоит из одной фазы.

Фаза - часть системы, отделенная от других ее частей поверхностью раздела, при переходе через которую свойства (плотность, теплопроводность, электропроводность, твердость и т.д.) изменяются скачкообразно. Фаза может быть твердой, жидкой, газообразной.

Наиболее важным видом растворов являются жидкие растворы, но в широком смысле растворы также бывают еще твердые (сплав латунь: медь, цинк; сталь: железо, углерод) и газообразные (воздух: смесь азота, кислорода, углекислого газа и различных примесей).

Раствор содержит не менее двух компонентов, из которых один является растворителем , а другие – растворенными веществами .

Растворитель – это компонент раствора, находящийся в том же агрегатном состоянии, что и раствор. Растворителя в растворе по массе всегда больше, чем остальных компонентов. Растворенное вещество находится в растворе в виде атомов, молекул или ионов .

От растворов отличаются:

Суспензия – это система, состоящая из мелких твердых частиц, взвешенных в жидкости (тальк в воде)

Эмульсия – это система, в которой одна жидкость раздроблена в другой, не растворяющей ее жидкости (т.е. мелкие капли жидкости, находящихся в другой жидкости: например,бензин в воде).

Аэрозоль – газ со взвешенными в нем твердыми или жидкими частицами (туман: воздух и капли жидкости)

Суспензии, эмульсии и аэрозоли состоят из нескольких фаз, они не гомогенны и являются дисперсными системами . Суспезии, эмульсии и аэрозоли – не растворы!

Химическая теория растворов.

Растворитель химически взаимодействует с растворенным веществом.

Химическая теория растворов создана Д.И. Менделеевым в конце ХIХв. на основании следующих экспериментальных фактов:


1) Растворение любого вещества сопровождается поглощением или выделением теплоты. То есть растворение является экзотермической или эндотермической реакцией.

Экзотермический процесс – процесс, сопровождающийся выделением тепла во внешнюю среду (Q>0).

Эндотермический процесс – процесс, сопровождающийся поглощением тепла из внешней среды (Q<0).

(пример : растворение CuSO 4 – экзотермический процесс, NH 4 Cl – эндотермический). Объяснение : чтобы молекулы растворителя могли оторвать частицы растворенного вещества друг от друга, необходимо затратить энергию (это эндотермическая составляющая процесса растворения), при взаимодействии частиц растворяемого вещества с молекулами растворителя энергия выделяется (экзотермический процесс). В результате тепловой эффект растворения определяется более сильной составляющей. (Пример : при растворении 1моль вещества в воде на разрыв его молекул потребовалось 250 кДж, а при взаимодействии образовавшихся ионов с молекулами растворителя выделилось 450 кДж. Каков суммарный тепловой эффект растворения? Ответ: 450-250=200 кДж, экзотермический эффект, т.к. экзотермическая составляющая больше эндотермической).

2) Смешение компонентов раствора с определенным объемом не дает суммы объемов (пример : 50 мл этилового спирта +50 мл воды при смешении дают 95 мл раствора)

Объяснение : благодаря взаимодействию молекул растворенного вещества и растворителя (притяжению, химическому связыванию и т.п.) объем «экономится».

Внимание ! Масса раствора строго равна сумме масс растворителя и растворенных веществ.

3) При растворении некоторых бесцветных веществ образуются окрашенные растворы. (пример : CuSO 4 – бесцветный, дает синий раствор).

Объяснение : при растворении некоторых бесцветных солей образуются окрашенные кристаллогидраты.

Вывод: Растворение – это сложный физико-химический процесс, при котором происходит взаимодействие (электростатическое, донорно-акцепторное, образование водородной связи) между частицами растворителя и растворенных веществ.

Процесс взаимодействия растворителя с растворенным веществом называется сольватацией . Продукты этого взаимодействия – сольваты . Для водных растворов применяются термины гидратация и гидраты .

Иногда при выпаривании воды кристаллы растворенного вещества оставляют часть молекул воды в своей кристаллической решетке. Такие кристаллы называются кристаллогидратами. Записываются так: CuSO 4 *5Н 2 О. То есть, каждая молекула сульфата меди CuSO 4 удерживает около себя 5 молекул воды, встраивая их в свою кристаллическую решетку.

В середине XIX века общепринятой считалась физическая теория растворов, одним из авторов которой являлся Вант-Гофф (Голландия). Эта теория рассматривала растворы как механические смеси, без учета взаимодействий между молекулами растворителя и частицами растворенного вещества.

Факты, которые не могла объяснить физическая теория растворов:

1) Тепловые эффекты растворения.

Пример. Растворение – процесс экзотермический; растворение – эндотермический.

2) Изменение (чаще – уменьшение) объема жидкости при растворении. Это явление называется контракция.

Пример. При смешивании 50 мл и 50 мл образуется 98 мл раствора

3) Изменение окраски некоторых веществ при растворении и некоторых растворов при выпаривании.

Примеры. Безводный сульфат меди(II) – белый порошок – при поглощении воды синеет.

Розовый раствор хлорида кобальта(II) при высыхании окраску не изменяет, а при последующем выпаривании – синеет.

1),2),3) - признаки химических реакций.

Д. И. Менделеев считал, что рассмотренные явления, безусловно, указывают на какие-то взаимодействия между растворенным веществом и растворителем. Он последовательно развивал мысль о химическом взаимодействии между частицами растворенного вещества и молекулами растворителя. Учение Менделеева было развито и дополнено русскими учеными И. А. Каблуковым и В. А. Кистяковским. На основе этих представлений произошло объединение физической и химической точки зрения на растворы.

Основные положения современной физико-химической теории растворов сводятся к следующему.

1) Растворитель и растворенное вещество химически взаимодействуют между собой.

2) В результате взаимодействия образуются непрочные соединения, называемые сольватами, а сам процесс называется сольватацией. В частном случае, когда растворителем является вода, эти соединения называются гидратами, а процесс – гидратацией.

Сами растворы, а также большинство гидратов (сольватов), которые образуются при растворении, имеют переменный состав. Этим они отличаются от химических соединений.

Физико-химическая теория растворов позволила объяснить многие непонятные до этого факты:

1) Изменение окраски некоторых веществ при растворении и некоторых растворов при выпаривании.

2) Тепловые эффекты при растворении.

Явление гидратации иногда можно наблюдать, не пользуясь специальными приборами. Например, безводный сульфат меди (II) CuSO 4 – белое вещество. При его растворении в воде образуется голубой раствор. Окраска раствора обусловливается гидратированными ионами меди. Гидратированные частички иногда настолько прочны, что при выделении растворенного вещества из раствора в твердую фазу молекулы воды входят в состав кристаллов. Так, при выпаривании водного раствора сульфата меди в твердую фазу выделяется соль CuSO 4 ∙5H 2 O.



Кристаллические вещества, в состав которых входят молекулы воды, называются кристаллогидратами, а содержащаяся в них вода - кристаллизационной

Аналогично объясняется изменение окраски раствора хлорида кобальта(II) при выпаривании. Гидратированные ионы кобальта в растворе - розового цвета, такой же розовый цвет имеет и кристаллогидрат кобальта (II) CoCl 2 ∙6H 2 O. Но при прокаливании на воздухе кристаллогидрат кобальта теряет кристаллизационную воду и превращается в безводный хлорид кобальта(II) синего цвета.

Образованием кристаллогидратов объясняются и тепловые эффекты при растворении. Тепловой эффект растворения складывается из энергии, затраченной на разрушение кристаллической решетки и отделение частиц растворенного вещества друг от друга, а также энергии, которая выделяется при гидратации.

Какой вклад энергии преобладает, такой тепловой эффект в итоге мы и получаем.

Изменение других термодинамических параметров при растворении.

Так как, в целом, при растворении беспорядок в системе увеличивается.

Так как растворение – процесс самопроизвольный.

Раствор – это однородная смесь переменного состава, состоящая из растворяемого вещества, растворителя и продуктов их взаимодействия.

Раствор, в котором данное вещество при определённой температуре больше не растворяется, называется насыщенным , а раствор, в котором это вещество ещё может растворяться, – ненасыщенным .

Кристаллогидраты

Если растворитель – вода, то продукты присоединения молекул воды к частицам растворяемого вещества называются гидратами , а процесс их образования – гидратацией .

Гидраты – очень неустойчивые соединения, и при выпаривании воды из раствора они легко разрушаются. Однако некоторые гидраты могут удерживать воду даже в твёрдом кристаллическом состоянии.

Такие вещества называют кристаллогидратами . Кристаллогидратами является большинство природных минералов. Много веществ получают в чистом виде в форме кристаллогидратов.

Химическая теория была предложена Д.И. Менделеевым. Согласно представлениям Д.И. Менделеева между молекулами растворяемого вещества и растворителем происходит химическое взаимодействие с образованием неустойчивых, превращающихся друг в друга соединений растворенного вещества с растворителем – сольватов.

Сольваты – это неустойчивые соединения переменного состава. Если растворителем является вода, их называют гидратами . Сольваты (гидраты) образуются за счет ион-дипольного, донорно-акцепторного взаимодействий, образования водородных связей и т.д.

9.Концентрация растворов. Растворимость, насыщенные и ненасыщенные растворы.

Концентрация – это относительное количество растворенного вещества в растворе.

Молярная концентрация (С)– это отношение количества растворенного вещества v (в молях) к объему раствора V в литрах.

Единица молярной концентрации – моль/л. Зная число молей вещества в 1 л раствора, легко отмерить нужное количество молей для реакции с помощью подходящей мерной посуды.

Массовая доля растворенного вещества – это отношение массы растворенного вещества m 1 к общей массе раствора m, выраженное в процентах.

Нормальность раствора обозначает число грамм-эквивалентов данного вещества в одном литре раствора или число миллиграмм-эквивалентов в одном миллилитре раствора. Грамм - эквивалентом вещества называется количество граммов вещества, численно равное его эквиваленту.

Раствори́мость - способность вещества образовывать с другими веществами однородные системы - растворы, в которых вещество находится в виде отдельных атомов, ионов, молекул или частиц.

Растворимость выражается концентрацией растворённого вещества в его насыщенном растворе либо в процентах, либо в весовых или объёмных единицах, отнесённых к 100 г или 100 см³ растворителя.

Ненасыщенный раствор - раствор, в котором концентрация растворенного вещества меньше, чем в насыщенном растворе, и в котором при данных условиях можно растворить ещё некоторое его количество.

Насыщенный раствор - раствор, в котором растворённое вещество при данных условиях достигло максимальной концентрации и больше не растворяется. Осадок данного вещества находится в равновесном состоянии с веществом в растворе.

Понравилась статья? Поделитесь ей